Aufgaben:Aufgabe 2.09: Reed–Solomon–Parameter: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 29: Zeile 29:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
 +
{Input-Box Frage
 +
|type="{}"}
 +
$xyz \ = \ ${ 5.4 3% } $ab$
 +
 +
{Input-Box Frage
 +
|type="{}"}
 +
$xyz \ = \ ${ 5.4 3% } $ab$
 +
 
{Multiple-Choice
 
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
Zeile 37: Zeile 45:
 
|type="{}"}
 
|type="{}"}
 
$xyz \ = \ ${ 5.4 3% } $ab$
 
$xyz \ = \ ${ 5.4 3% } $ab$
 +
 +
{Multiple-Choice
 +
|type="[]"}
 +
+ correct
 +
- false
 
</quiz>
 
</quiz>
  

Version vom 16. Dezember 2017, 14:31 Uhr

Einige Reed–Solomon–Codes

Nebenstehend finden Sie eine unvollständige Liste möglicher Reed–Solomon–Codes, die bekanntlich auf einem Galoisfeld ${\rm GF}(q) = {\rm GF}(2^m)$ basieren. Der Parameter $m$ gibt an, mit wie vielen Bits ein RS–Codesymbol dargestellt wird. Es gilt:

  • $m = 4$ (rote Schrift),
  • $m = 5$ (blaue Schrift),
  • $m = 6$ (grüne Schrift).


Ein Reed–Solomon–Code wird wie folgt bezeichnet:

  1. ${\rm RSC}(n, \ k, \ d_{\rm min})_q$


Die Parameter haben folgende Bedeutung:

  • $n$ gibt die Anzahl der Symbole eines Codewortes $\underline{c}$ an  ⇒  Länge des Codes,
  • $k$ gibt die Anzahl der Symbole eines Informationsblocks $\underline{u}$ an  ⇒  Dimension des Codes,
  • $d_{\rm min}$ kennzeichnet die minimale Distanz zwischen zwei Codeworten (stets gleich $n-k+1$),
  • $q$ gibt einen Hinweis auf die Verwendung des Galoisfeldes ${\rm GF}(q)$


Rechts daneben ist die Binärrepräsentation des gleichen Codes angegeben. Bei dieser Realisierung eines RS–Codes wird jedes Informations– und Codesymbol durch $m \ \rm Bit$ dargestellt. Beispielsweise erkennt man aus der ersten Zeile, dass die minimale Distanz hinsichtlich der Bits ebenfalls $d_{\rm min} = 5$ ist, wenn die minimale Distanz in ${\rm GF}(2^m) \, d_{\rm min} = 5$ beträgt. Damit können bis zu $t = 2$ Bitfehler (oder Symbolfehler) korrigiert und bis zu $e = 4$ Bitfehler (oder Symbolfehler) erkannt werden.

Hinweise:


Fragebogen

1

Input-Box Frage

$xyz \ = \ $

$ab$

2

Input-Box Frage

$xyz \ = \ $

$ab$

3

Multiple-Choice

correct
false

4

Input-Box Frage

$xyz \ = \ $

$ab$

5

Multiple-Choice

correct
false


Musterlösung

(1)  (2)  (3)  (4)  (5)