Aufgaben:Aufgabe 2.12Z: Reed–Solomon–Syndromberechnung: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 27: | Zeile 27: | ||
\end{pmatrix} \hspace{0.05cm}.$$ | \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | '' | + | ''Hinweise:'' |
* Die Aufgabe bezieht auf die [[Kanalcodierung/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28A.29:_Auswertung_des_Syndroms_beim_BDD| Seite 4]] des Kapitels Fehlercodierung nach Reed–Solomon–Codierung. | * Die Aufgabe bezieht auf die [[Kanalcodierung/Fehlerkorrektur_nach_Reed%E2%80%93Solomon%E2%80%93Codierung#Schritt_.28A.29:_Auswertung_des_Syndroms_beim_BDD| Seite 4]] des Kapitels Fehlercodierung nach Reed–Solomon–Codierung. | ||
+ | * Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
+ | |||
Zeile 35: | Zeile 37: | ||
<quiz display=simple> | <quiz display=simple> | ||
{Multiple-Choice | {Multiple-Choice | ||
− | |type=" | + | |type="()"} |
+ | + correct | ||
+ | - false | ||
+ | |||
+ | {Multiple-Choice | ||
+ | |type="()"} | ||
+ | + correct | ||
+ | - false | ||
+ | |||
+ | {Multiple-Choice | ||
+ | |type="()"} | ||
+ correct | + correct | ||
- false | - false |
Version vom 18. Dezember 2017, 11:55 Uhr
Wie in der Aufgabe A2.12 betrachten wir den Reed–Solomon–Code $(7, \, 4, \, 4)_8$, der auf dem Galoisfeld ${\rm GF}(q)$ mit $q = 8 = 2^3$ basiert. Die Grafik zeigt die zugehörige Umrechnungstabelle.
Gegeben sind die möglichen Codesymbole in Exponentendarstellung (Potenzen von $\alpha$) sowie in Polynom– und Koeffizientendarstellung.
Vorgegeben ist das Empfangswort $\underline{y} = (\alpha, \, 0, \, \alpha^3, \, 0, \, 1, \, \alpha, \, 0)$. Anhand des Syndroms
- $$\underline {s} = (s_0, s_1, s_2) = \underline {y} \cdot { \boldsymbol{\rm H }}^{\rm T}$$
soll überprüft werden, ob einzelne Symbole des Empfangsvektors $\underline{y}$ bei der Übertragung verfälscht wurden. Gegeben ist hierzu die Prüfmatrix $\mathbf{H}$ des betrachteten Codes und deren Transponierte:
- $${ \boldsymbol{\rm H}} = \begin{pmatrix} 1 & \alpha^1 & \alpha^2 & \alpha^3 & \alpha^4 & \alpha^5 & \alpha^6\\ 1 & \alpha^2 & \alpha^4 & \alpha^6 & \alpha^1 & \alpha^{3} & \alpha^{5}\\ 1 & \alpha^3 & \alpha^6 & \alpha^2 & \alpha^{5} & \alpha^{1} & \alpha^{4} \end{pmatrix} \hspace{0.05cm},\hspace{0.4cm} { \boldsymbol{\rm H}}^{\rm T} = \begin{pmatrix} 1 & 1 & 1 \\ \alpha^1 & \alpha^2 & \alpha^3 \\ \alpha^2 & \alpha^4 & \alpha^6 \\ \alpha^3 & \alpha^6 & \alpha^2 \\ \alpha^4 & \alpha^1 & \alpha^{5} \\ \alpha^5 & \alpha^{3} & \alpha^{1} \\ \alpha^6 & \alpha^{5} & \alpha^{4} \end{pmatrix} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe bezieht auf die Seite 4 des Kapitels Fehlercodierung nach Reed–Solomon–Codierung.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)