Signaldarstellung/Allgemeine Beschreibung: Unterschied zwischen den Versionen
Zeile 11: | Zeile 11: | ||
* die Eigenschaften eines <i>Gleichsignals</i> als Grenzfall eines periodischen Signals, | * die Eigenschaften eines <i>Gleichsignals</i> als Grenzfall eines periodischen Signals, | ||
* die Definition und Interpretation der <i>Diracfunktion</i>, | * die Definition und Interpretation der <i>Diracfunktion</i>, | ||
− | * Spektraldarstellung eines <i>Gleichsignals</i> oder eines <i>Gleichsignalanteils</i>, | + | * die Spektraldarstellung eines <i>Gleichsignals</i> oder eines <i>Gleichsignalanteils</i>, |
* die Zeit– und Frequenzdarstellung <i>harmonischer Schwingungen</i>, und schließlich | * die Zeit– und Frequenzdarstellung <i>harmonischer Schwingungen</i>, und schließlich | ||
* die Anwendung der <i>Fourierreihe</i> zur Spektralanalyse periodischer Signale. | * die Anwendung der <i>Fourierreihe</i> zur Spektralanalyse periodischer Signale. | ||
Zeile 24: | Zeile 24: | ||
*dem Lehrsoftwarepaket [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] ⇒ Link verweist auf die ZIP-Version des Programms und | *dem Lehrsoftwarepaket [http://www.lntwww.de/downloads/Sonstiges/Programme/LNTsim.zip LNTsim] ⇒ Link verweist auf die ZIP-Version des Programms und | ||
*dieser [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung] ⇒ Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118. | *dieser [http://www.lntwww.de/downloads/Sonstiges/Texte/Praktikum_LNTsim_Teil_A.pdf Praktikumsanleitung] ⇒ Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118. | ||
+ | |||
==Eigenschaften und Anwendungen== | ==Eigenschaften und Anwendungen== | ||
+ | <br> | ||
Für die Nachrichtentechnik besitzen periodische Signale eine große Bedeutung: | Für die Nachrichtentechnik besitzen periodische Signale eine große Bedeutung: | ||
*Sie gehören zur Klasse der [[Signaldarstellung/Klassifizierung_von_Signalen#Deterministische_und_stochastische_Signale|deterministischen Signale]], deren Zeitfunktion in analytischer Form angegeben werden kann. | *Sie gehören zur Klasse der [[Signaldarstellung/Klassifizierung_von_Signalen#Deterministische_und_stochastische_Signale|deterministischen Signale]], deren Zeitfunktion in analytischer Form angegeben werden kann. | ||
*Ihr Signalverlauf ist damit für alle Zeiten $t$ bekannt und für die Zukunft eindeutig vorhersagbar. | *Ihr Signalverlauf ist damit für alle Zeiten $t$ bekannt und für die Zukunft eindeutig vorhersagbar. | ||
*Sie sind daher niemals informationstragende Signale. | *Sie sind daher niemals informationstragende Signale. | ||
+ | |||
Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel | Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel | ||
Zeile 37: | Zeile 40: | ||
− | {{Beispiel} | + | {{GraueBox|TEXT= |
− | [[Datei:P_ID161__Sig_T_2_1_S1.png|right|Oszilloskopbild von Cosinus- und Dreiecksignal]] | + | $\text{Beispiel 1:}$ |
+ | [[Datei:P_ID161__Sig_T_2_1_S1.png|right|frame|Oszilloskopbild von Cosinus- und Dreiecksignal]] | ||
Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale: | Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale: | ||
*oben ein Cosinussignal, | *oben ein Cosinussignal, | ||
Zeile 44: | Zeile 48: | ||
− | Wie aus den eingeblendeten Einstellungen zu ersehen ist, ist bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt. | + | Wie aus den eingeblendeten Einstellungen zu ersehen ist, ist bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt.}} |
− | |||
Zeile 65: | Zeile 68: | ||
{{Beispiel}} | {{Beispiel}} | ||
− | [[Datei:P_ID211__Sig_T_2_1_S2_neu.png|right|Zur Definition von Periodendauer, Grundfrequenz und Kreisfrequenz]] | + | [[Datei:P_ID211__Sig_T_2_1_S2_neu.png|right|frame|Zur Definition von Periodendauer, Grundfrequenz und Kreisfrequenz]] |
Dargestellt ist hier ein periodisches Zeitsignal: | Dargestellt ist hier ein periodisches Zeitsignal: | ||
*Die Periodendauer $T_{0}$ beträgt 2.5 Millisekunden. | *Die Periodendauer $T_{0}$ beträgt 2.5 Millisekunden. | ||
Zeile 85: | Zeile 88: | ||
Addiert werden ein cosinusförmiges Signal $x_{1}(t)$ mit der Periodendauer $T_{1} = 2\; {\rm ms}$ (blauer Signalverlauf) und ein Sinussignal $x_{2}(t)$ mit der Periodendauer $T_{2} = 5\; {\rm ms}$ und doppelt so großer Amplitude (grüner Verlauf). | Addiert werden ein cosinusförmiges Signal $x_{1}(t)$ mit der Periodendauer $T_{1} = 2\; {\rm ms}$ (blauer Signalverlauf) und ein Sinussignal $x_{2}(t)$ mit der Periodendauer $T_{2} = 5\; {\rm ms}$ und doppelt so großer Amplitude (grüner Verlauf). | ||
− | [[Datei:P_ID247__Sig_T_2_1_S3_neu.png|Resultierende Periodendauer]] | + | [[Datei:P_ID247__Sig_T_2_1_S3_neu.png|frame|Resultierende Periodendauer]] |
*Das (rote) Summensignal $x(t) = x_{1}(t) + x_{2}(t)$ weist dann die resultierende Periodendauer $T_{0} = 10\; {\rm ms}$ auf ⇒ Grundfrequenz $f_{0} = 100\; {\rm Hz}$. | *Das (rote) Summensignal $x(t) = x_{1}(t) + x_{2}(t)$ weist dann die resultierende Periodendauer $T_{0} = 10\; {\rm ms}$ auf ⇒ Grundfrequenz $f_{0} = 100\; {\rm Hz}$. |
Version vom 20. Dezember 2017, 17:13 Uhr
Inhaltsverzeichnis
# ÜBERBLICK ZUM ZWEITEN HAUPTKAPITEL #
Im Folgenden werden periodische Signale betrachtet und diese sowohl im Zeit– als auch im Frequenzbereich mathematisch beschrieben. Dieses Kapitel beinhaltet im Einzelnen:
- einige Grundbegriffe wie Periodendauer, Grundfrequenz und Kreisfrequenz,
- die Eigenschaften eines Gleichsignals als Grenzfall eines periodischen Signals,
- die Definition und Interpretation der Diracfunktion,
- die Spektraldarstellung eines Gleichsignals oder eines Gleichsignalanteils,
- die Zeit– und Frequenzdarstellung harmonischer Schwingungen, und schließlich
- die Anwendung der Fourierreihe zur Spektralanalyse periodischer Signale.
Weitere Informationen zum Thema sowie Aufgaben, Simulationen und Programmierübungen finden Sie im
- Kapitel 6: Lineare zeitinvariante Systeme (Programm lzi)
des Praktikums „Simulationsmethoden in der Nachrichtentechnik”. Diese frühere LNT-Lehrveranstaltung an der TU München basiert auf
- dem Lehrsoftwarepaket LNTsim ⇒ Link verweist auf die ZIP-Version des Programms und
- dieser Praktikumsanleitung ⇒ Link verweist auf die PDF-Version; Kapitel 6: Seite 99-118.
Eigenschaften und Anwendungen
Für die Nachrichtentechnik besitzen periodische Signale eine große Bedeutung:
- Sie gehören zur Klasse der deterministischen Signale, deren Zeitfunktion in analytischer Form angegeben werden kann.
- Ihr Signalverlauf ist damit für alle Zeiten $t$ bekannt und für die Zukunft eindeutig vorhersagbar.
- Sie sind daher niemals informationstragende Signale.
Trotzdem werden periodische Signale oft auch in der Nachrichtentechnik benötigt, zum Beispiel
- für die Modulation und Demodulation bei Trägerfrequenzsystemen,
- für die Synchronisation und Taktgenerierung bei Digitalsystemen,
- als Test- und Prüfsignale bei der Systemrealisierung.
$\text{Beispiel 1:}$
Auf dem Oszilloskopbild sehen Sie zwei typische Vertreter periodischer Signale:
- oben ein Cosinussignal,
- unten ein Dreiecksignal.
Wie aus den eingeblendeten Einstellungen zu ersehen ist, ist bei beiden Signalen die Periodendauer eine Millisekunde und die Amplitude ein Volt.
Definition und Parameter
Bevor wir uns den Signalparametern eines periodischen Signals zuwenden, soll der Begriff „Periodizität” eindeutig definiert werden:
Ein periodisches Signal $x(t)$ liegt genau dann vor, wenn für alle beliebigen Werte von $t$ und alle ganzzahligen Werte von $i$ mit einem geeigneten $T_{0}$ gilt:
$x(t+i\cdot T_{0}) = x(t)$.
Daraus ergeben sich die folgenden Kenngrößen:
- Die Periodendauer $T_{0}$ gibt den kleinstmöglichen Wert an, der obige Gleichung erfüllt.
- Die Grundfrequenz $f_{0} = 1/T_{0}$ beschreibt die Anzahl der Perioden pro Zeiteinheit (meist je Sekunde). Die Einheit „1/s” wird auch mit „Hz” bezeichnet, benannt nach dem deutschen Physiker Heinrich Hertz.
- Die Grundkreisfrequenz $\omega_{0}$ stellt die Winkeldrehung pro Sekunde dar, die meistens im Bogenmaß angegeben wird. Im Gegensatz zur Grundfrequenz ist hier nicht die Einheit „Hz”, sondern „1/s” üblich. Es gilt folgende Gleichung:
- $\omega_{0}=2\pi f_{0} = {2\pi}/{T_{0}}$.
Dargestellt ist hier ein periodisches Zeitsignal:
- Die Periodendauer $T_{0}$ beträgt 2.5 Millisekunden.
- Daraus berechnet sich die Grundfrequenz $f_0$ zu 400 Hz.
- Die Grundkreisfrequenz $\omega_{0}$ ergibt sich zu 2513 1/s.
Resultierende Periodendauer
- Besteht ein Signal $x(t)$ aus der Summe zweier periodischer Signale $x_{1}(t)$ und $x_{2}(t)$ mit den Periodendauern $T_{1}$ bzw. $T_{2}$, so ist die resultierende Periodendauer des Summensignals das kleinste gemeinsame Vielfache von $T_{1}$ und $T_{2}$.
- Diese Aussage gilt unabhängig von den Amplituden– und Phasenverhältnissen.
- Besitzen $T_{1}$ und $T_{2}$ dagegen kein rationales gemeinsames Vielfaches (Beispiel: $T_{2} = \pi \cdot T_{1}$), so ist das Summensignal $x(t)$ im Gegensatz zu seinen beiden Komponenten $x_{1}(t)$ und $x_{2}(t)$ nicht periodisch.
Addiert werden ein cosinusförmiges Signal $x_{1}(t)$ mit der Periodendauer $T_{1} = 2\; {\rm ms}$ (blauer Signalverlauf) und ein Sinussignal $x_{2}(t)$ mit der Periodendauer $T_{2} = 5\; {\rm ms}$ und doppelt so großer Amplitude (grüner Verlauf).
- Das (rote) Summensignal $x(t) = x_{1}(t) + x_{2}(t)$ weist dann die resultierende Periodendauer $T_{0} = 10\; {\rm ms}$ auf ⇒ Grundfrequenz $f_{0} = 100\; {\rm Hz}$.
- Die Frequenz $f_{0}$ selbst ist in $x(t)$ nicht enthalten, lediglich ganzzahlige Vielfache davon, nämlich $f_{1} = 500\; {\rm Hz}$ und $f_{2} = 200\; {\rm Hz}$.
Mit dem Interaktionsmodul Periodendauer periodischer Signale lässt sich die resultierende Periodendauer zweier harmonischer Schwingungen ermitteln.
Aufgaben zum Kapitel
Zusatzaufgabe 2.1Z: Summensignal