Aufgaben:Aufgabe 2.1Z: Summensignal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 53: Zeile 53:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''1.'''  Für das Rechtecksignal gilt $T_x = 1 \,\text{ms}$    ⇒   $f_x \underline{= 1 \, \text{kHz}}$.
+
'''(1)'''  Für das Rechtecksignal gilt $T_x = 1 \,\text{ms}$    ⇒   $f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}$.
  
'''2.'''  Für das Dreiecksignal gilt $T_y = 2.5 \,\text{ms}$ und $f_y \underline{= 0.4\,  \text{kHz}}$.
 
  
'''3.'''  Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht.
+
'''(2)'''   Für das Dreiecksignal gilt $T_y = 2.5 \,\text{ms}$ und $f_y \hspace{0.15cm}\underline{= 0.4\,  \text{kHz}}$.
 +
 
 +
 
 +
'''(3)'''  Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht.
 
[[Datei:P_ID320__Sig_Z_2_1_d_neu.png|right|Differenzsignal|]]
 
[[Datei:P_ID320__Sig_Z_2_1_d_neu.png|right|Differenzsignal|]]
  
'''4.'''  Die Periodendauer $T_d$ ändert sich gegenüber der Periodendauer $T_s$ nicht, wenn das Signal ${y(t)}$ nicht addiert, sondern subtrahiert wird:     $T_d = T_s \underline{= 5\, \text{ms}}$.
 
  
'''5.'''  Der größte gemeinsame Teiler von $f_u = 998 \,\text{Hz}$ und $f_{v} = 1002 \,\text{Hz}$ ist $f_w = 2 \,\text{Hz}$. Der Kehrwert hiervon ergibt die Periodendauer $T_w \underline{= 500 \,\text{ms}}$.
+
'''(4)'''   Die Periodendauer $T_d$ ändert sich gegenüber der Periodendauer $T_s$ nicht, wenn das Signal ${y(t)}$ nicht addiert, sondern subtrahiert wird:     $T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}$.
 +
 
 +
 
 +
'''(5)'''  Der größte gemeinsame Teiler von $f_u = 998 \,\text{Hz}$ und $f_{v} = 1002 \,\text{Hz}$ ist $f_w = 2 \,\text{Hz}$. Der Kehrwert hiervon ergibt die Periodendauer $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 20. Dezember 2017, 10:16 Uhr

Summensignal

In der nebenstehenden Grafik sind die beiden periodischen Signale ${x(t)}$ und ${y(t)}$ dargestellt, aus denen das Summensignal ${s(t)}$ – im unteren Bild skizziert – sowie das Differenzsignal ${d(t)}$ gebildet werden.

Weiterhin betrachten wir in dieser Aufgabe das Signal ${w(t)}$, das sich aus der Summe der beiden periodischen Signalen ${u(t)}$ und $v(t)$ ergibt. Die Grundfrequenzen der Signale seien

  • $f_u = 998 \,\text{Hz},$
  • $f_v = 1002 \,\text{Hz}.$

Mehr ist von diesen Signalen ${u(t)}$ und $v(t)$ nicht bekannt.



Hinweise:


Fragebogen

1

Wie groß ist Periodendauer $T_x$ und Grundfrequenz $f_x$ des Signals ${x(t)}$?

$f_x\ = \ $

  $\text{kHz}$

2

Wie groß ist Periodendauer $T_y$ und Grundfrequenz $f_y$ des Signals ${y(t)}$?

$f_y\ = \ $

  $\text{kHz}$

3

Bestimmen Sie die Grundfrequenz $f_s$ sowie die Periodendauer $T_s$ des Summensignals ${s(t)}$ und überprüfen Sie das Ergebnis anhand der Skizze.

$T_s\ = \ $

  $\text{ms}$

4

Welche Periodendauer $T_d$ weist das Differenzsignal ${d(t)}$ auf?

$T_d\ = \ $

  $\text{ms}$

5

Welche Periodendauer $T_w$ besitzt das Signal ${w(t)} = {u(t)} + v(t)$?

$T_w\ = \ $

  $\text{ms}$


Musterlösung

(1)  Für das Rechtecksignal gilt $T_x = 1 \,\text{ms}$   ⇒   $f_x \hspace{0.15cm}\underline{= 1 \, \text{kHz}}$.


(2)  Für das Dreiecksignal gilt $T_y = 2.5 \,\text{ms}$ und $f_y \hspace{0.15cm}\underline{= 0.4\, \text{kHz}}$.


(3)  Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht.

P ID320 Sig Z 2 1 d neu.png


(4)  Die Periodendauer $T_d$ ändert sich gegenüber der Periodendauer $T_s$ nicht, wenn das Signal ${y(t)}$ nicht addiert, sondern subtrahiert wird:     $T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}$.


(5)  Der größte gemeinsame Teiler von $f_u = 998 \,\text{Hz}$ und $f_{v} = 1002 \,\text{Hz}$ ist $f_w = 2 \,\text{Hz}$. Der Kehrwert hiervon ergibt die Periodendauer $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.