Aufgaben:Aufgabe 2.5Z: Komprimierungsfaktor vs. Restredundanz: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 21: Zeile 21:
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch|Komprimierung nach Lempel, Ziv und Welch]].
 
*Insbesondere wird  Bezug genommen auf die Seiten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredrundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]], [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Effizienz_der_Lempel.E2.80.93Ziv.E2.80.93Codierung|Effizienz der Lempel-Ziv-Codierung]] sowie [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Quantitative Aussagen zur asymptotischen Optimalität]].
 
*Insbesondere wird  Bezug genommen auf die Seiten [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Restredrundanz_als_Ma.C3.9F_f.C3.BCr_die_Effizienz_von_Codierverfahren|Restredrundanz als Maß für die Effizienz von Codierverfahren]], [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Effizienz_der_Lempel.E2.80.93Ziv.E2.80.93Codierung|Effizienz der Lempel-Ziv-Codierung]] sowie [[Informationstheorie/Komprimierung_nach_Lempel,_Ziv_und_Welch#Quantitative_Aussagen_zur_asymptotischen_Optimalit.C3.A4t|Quantitative Aussagen zur asymptotischen Optimalität]].
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
+
  
  

Version vom 29. Mai 2018, 13:02 Uhr

LZW–Datenlänge L(N) für zwei Quellen

Wir betrachten wie in der Aufgabe 2.5 die Datenkomprimierung mit dem 1983 veröffentlichten Lempel–Ziv–Welch–Algorithmus. Dabei gilt:

  • Die Eingangsfolge habe die Länge N.
  • Die Länge der LZW–Coderausgabe ist L.

Die Grafik zeigt für zwei verschiedene binäre Nachrichtenquellen BQ1 und BQ2 den Zusammenhang zwischen den Folgenlängen N und L, dargestellt durch den Funktionsverlauf L(N). Die beiden Nachrichtenquellen besitzen die gleichen statistischen Eigenschaften wie in Aufgabe 2.5:

  • BQ1 ist aufgrund von ungleichen Symbolwahrscheinlichkeiten (pA = 0.89, pB = 0.11) redundant. Es bestehen keine Bindungen zwischen den einzelnen Symbolen. Die Entropie ist H = 0.5 bit/Quellensymbol.
  • BQ2 ist redundanzfrei und weist die Entropie H = 1 bit/Quellensymbol auf.

Weiter benötigen Sie für die Lösung dieser Aufagbe noch zwei Definitionen:

  • Der Komprimierungsfaktor ist definitionsgemäß K(N) = L(N)/N.
  • Die relative Redundanz der LZW–Coderfolge (im Folgenden Restredundanz genannt) ist
$$r(N) = \frac{L(N) - N \cdot H}{L(N)}= 1 - \frac{ N \cdot H}{L(N)}\hspace{0.05cm}.$$


Hinweise:


Fragebogen

1

Welche Komprimierungfaktoren K(N) ergeben sich mit N = 10000?

BQ1:     $K(N = 10000) \ = $

BQ2:     $K(N = 10000) \ = $

2

Wie groß ist die Restredundanz r(N) (in Prozent)? Es gelte wieder N = 10000.

BQ1:     $r(N = 10000) \ = $

$\ \%$
BQ2:     $r(N = 10000) \ = $

$\ \%$

3

Welche Aussagen liefert der Vergleich von N = 10000 und N = 50000?

Bei beiden Quellen ist K(N = 50000) kleiner als K(N = 10000).
Bei beiden Quellen ist r(N = 50000) kleiner als r(N = 10000).
Nur bei BQ1 ergeben sich mit N = 50000 günstigere Werte.


Musterlösung

(1)  Der Komprimierungsfaktor ist definiert als der Quotient der Längen von LZW–Ausgangsfolge (L) und Eingangsfolge (N = 10000):

$${\rm BQ1:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{6800}{10000}\hspace{0.15cm}\underline{= 0.680}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} K \hspace{0.2cm} = \hspace{0.2cm} \frac{12330}{10000}\hspace{0.15cm}\underline{= 1.233}\hspace{0.05cm}. $$
  • Die LZW–Codierung macht natürlich nur bei der redundanten Binärquelle BQ1 Sinn. Hier kann die Datenmenge um 32% gesenkt werden.
  • Bei der redundanzfreien Binärquelle BQ2 führt dagegen die LZW–Codierung zu einer um 23.3% größeren Datenmenge.


(2)  Aus der angegebenen Gleichung erhält man mit N = 10000:

$${\rm BQ1:}\hspace{0.3cm} H = 0.5\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{0.5 \cdot N}{L } = 1 - \frac{5000}{6800 } \hspace{0.15cm}\underline{\approx 26.5\,\%}\hspace{0.05cm},$$
$$ {\rm BQ2:}\hspace{0.3cm} H = 1.0\hspace{0.05cm},\hspace{0.2cm} r(N=10000) \hspace{0.2cm} = \hspace{0.2cm}1 - \frac{N}{L } = 1 - \frac{10000}{12330 } \hspace{0.15cm}\underline{\approx 19\,\%}\hspace{0.05cm}.$$
  • Die Restredundanz gibt die (relative) Redundanz der LZWQ–Ausgangsfolge an.
  • Obwohl die Quelle BQ1 für die LZW–Codierung besser geeignet ist als die redundanzfreie Quelle BQ2, ergibt sich bei BQ1 wegen der Redundanz in der Eingangsfolge eine größere Restredundanz.
  • Eine kleinere Restredundanz r(N) bei gegebenem N sagt also nichts darüber aus, ob die LZW–Codierung für die vorliegende Quelle sinnvoll ist.
  • Hierzu muss der Komprimierungsfaktor K betrachtet werden. Allgemein gilt folgender Zusammenhang zwischen r(N) und K(N):
$$r(N) = 1 - \frac{H}{K(N)}\hspace{0.05cm},\hspace{0.2cm} K(N) = H \cdot (1- r(N)) \hspace{0.05cm}.$$

(3)  Aus der Tabelle auf der Angabenseite kann man ablesen (bzw. daraus ableiten)

  • für die redundante Binärquelle BQ1:
$$L(N = 50000) = 32100\hspace{0.05cm},\hspace{0.2cm} K(N = 50000) = 0.642\hspace{0.05cm},\hspace{0.2cm}r(N = 50000) \hspace{0.15cm}\underline {= 22.2\,\% \hspace{0.05cm}},$$
  • für die redundanzfreie Binärquelle BQ2:
$$L(N = 50000) = 59595\hspace{0.05cm},\hspace{0.2cm} K(N = 50000) = 1.192\hspace{0.05cm},\hspace{0.2cm}r(N = 50000) \hspace{0.15cm}\underline {= 16.1\,\% \hspace{0.05cm}}.$$

Richtig sind somit die Aussagen 1 und 2:

  • Für beide Quellen ist der Komprimierungsfaktor K(N) für N = 50000 kleiner als für N = 10000.
  • Gleiches gilt für die Resrredundanz: r(N = 50000) ist kleiner als r(N = 10000).
  • Sowohl hinsichtlich K(N) als auch hinsichtlich r(N) ergeben sich also bei größerem N „günstigere” Werte, auch dann, wenn eigentlich wie bei der redundanzfreien Binärquelle BQ2 die Anwendung von Lempel–Ziv zu einer Verschlechterung führt.