Aufgaben:Aufgabe 4.18Z: BER von kohärenter und nichtkohärenter FSK: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 4.18Z BER von kohärenter und nichtkohärenter FSK nach Aufgabe 4.18Z: BER von kohärenter und nichtkohärenter FSK) |
K (Textersetzung - „* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
||
Zeile 30: | Zeile 30: | ||
* Bezug genommen wird aber auch auf das Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodultion]]. | * Bezug genommen wird aber auch auf das Kapitel [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodultion]]. | ||
* Weitere Informationen finden Sie im Buch [[Modulationsverfahren]]. | * Weitere Informationen finden Sie im Buch [[Modulationsverfahren]]. | ||
− | + | ||
* Verwenden Sie die Näherung ${\rm lg}(2) \approx 0.3$. | * Verwenden Sie die Näherung ${\rm lg}(2) \approx 0.3$. | ||
Version vom 29. Mai 2018, 14:18 Uhr
Die Grafik zeigt die Bitfehlerwahrscheinlichkeit für eine binäre FSK–Modulation (BFSK) bei
- kohärenter Demodulation bzw.
- inkohärenter Demodulation
im Vergleich zur binären Phasenmodulation (BPSK). Es wird stets Orthogonalität vorausgesetzt. Bei kohärenter Demodulation kann hierbei der Modulationsindex $h$ ein Vielfaches von $0.5$ sein, so dass die mittlere Kurve auch für Minimum Shift Keying (MSK) gültig ist. Dagegen muss bei nichtkohärenter Demodulation einer FSK der Modulationsindex $h$ ein Vielfaches von $1$ sein.
Diesem Systemvergleich liegt der AWGN–Kanal zugrunde, gekennzeichnet durch das Verhältnis $E_{\rm B}/N_0$. Die Gleichungen für die Bitfehlerwahrscheinlichkeiten lauten bei
- Binary Frequency Shift Keying (BFSK) mit kohärenter Demodulation:
- $$p_{\rm B} = {\rm Q } \left ( \sqrt {{E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$
- Binary Frequency Shift Keying (BFSK) mit inkohärenter Demodulation:
- $$p_{\rm B} = {1}/{2} \cdot {\rm e}^{- E_{\rm B}/{(2N_0) }}\hspace{0.05cm}.$$
- Binary Phase Shift Keying (BPSK), nur kohärente Demodulation möglich:
- $$p_{\rm B} = {\rm Q } \left ( \sqrt {{2 \cdot E_{\rm B}}/{N_0} }\right ) \hspace{0.05cm}.$$
Bei BPSK muss das logarithmierte Verhältnis $10 \cdot {\rm lg} \, (E_{\rm B}/N_0)$ mindestens $9.6 \, \rm dB$ betragen, damit die Bitfehlerwahrscheinlichkeit den Wert $p_{\rm B} = 10^{\rm –5}$ nicht überschreitet.
Bei binären Modulationsverfahren kann $p_{\rm B}$ auch durch $p_{\rm S}$ und $E_{\rm B}$ durch $E_{\rm S}$ ersetzt werden. Dann spricht man von der Symbolfehlerwahrscheinlichkeit $p_{\rm S}$ und der Symbolenergie $E_{\rm S}$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Trägerfrequenzsysteme mit nichtkohärenter Demodulation.
- Bezug genommen wird aber auch auf das Kapitel Trägerfrequenzsysteme mit kohärenter Demodultion.
- Weitere Informationen finden Sie im Buch Modulationsverfahren.
- Verwenden Sie die Näherung ${\rm lg}(2) \approx 0.3$.
Fragebogen
Musterlösung
- $$10 \cdot {\rm lg}\hspace{0.05cm} {E_{\rm B}}/ {N_{\rm 0}}\approx 9.6\,\,{\rm dB} + 3\,\,{\rm dB}\hspace{0.15cm} \underline{=12.6\,\,{\rm dB}}\hspace{0.05cm}.$$
(2) Richtig ist der Lösungsvorschlag 2:
- Die angegebene Gleichung gilt nicht nur für die MSK (diese ist eine FSK mit $h = 0.5$), sondern für jede Form von orthogonaler FSK.
- Eine solche liegt vor, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist, zum Beispiel für $h = 1$.
- Mit $h = 0.7$ ergibt sich keine orthogonale FSK.
- Es kann gezeigt werden, dass sich für $h = 0.7$ sogar eine kleinere Fehlerwahrscheinlichkeit als bei orthogonaler FSK ergibt.
- Mit $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ erreicht man hier sogar $p_{\rm B} \approx 10^{\rm –6}$, also eine Verbesserung um eine Zehnerpotenz.
(3) Aus der Umkehrfunktion der angegebenen Gleichung erhält man:
- $$\frac{E_{\rm B}} {2 \cdot N_{\rm 0}}= {\rm ln}\hspace{0.05cm}\frac{1}{2 p_{\rm B}}= {\rm ln}(50000)\approx 10.82\hspace{0.3cm} \Rightarrow \hspace{0.3cm} {E_{\rm B}}/ {N_{\rm 0}}= 21.64 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg}\hspace{0.09cm} {E_{\rm B}}/ {N_{\rm 0}}\hspace{0.15cm} \underline{\approx 13.4\,\,{\rm dB}}\hspace{0.05cm}.$$
(4) Aus $10 \cdot {\rm lg} \, E_{\rm B}/N_0 = 12.6 \ \rm dB$ folgt:
- $${E_{\rm B}} /{N_{\rm 0}}= 10^{1.26} \approx 16.8 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{E_{\rm B}} {2 \cdot N_{\rm 0}}\approx 8.4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} p_{\rm B} = {1}/{2} \cdot {\rm e}^{- 8.4}\hspace{0.15cm} \underline{ \approx 0.012 \%}\hspace{0.05cm}.$$
Das heißt: Bei gleichem $E_{\rm B}/N_0$ wird die Fehlerwahrscheinlichkeit bei der nichtkohärenten Demodulation gegenüber der kohärenten Demodulation gemäß Teilaufgabe (1) um etwa den Faktor 11 vergrößert.