Applets:Binomial- und Poissonverteilung (Applet): Unterschied zwischen den Versionen
Jimmy (Diskussion | Beiträge) |
Jimmy (Diskussion | Beiträge) |
||
Zeile 64: | Zeile 64: | ||
<br> | <br> | ||
Die '''Poissonverteilung''' ist ein Sonderfall der Binomialverteilung, für den die Grenzübergänge | Die '''Poissonverteilung''' ist ein Sonderfall der Binomialverteilung, für den die Grenzübergänge | ||
− | + | :$I → ∞\hspace{0.3cm}$ und $\hspace{0.3cm}p → 0$ | |
− | $ | ||
gelten. Setzt man diese in die Gleichung für die '''Wahrscheinlichkeiten der Binomialverteilung ''' ein, so erhält man die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße z: | gelten. Setzt man diese in die Gleichung für die '''Wahrscheinlichkeiten der Binomialverteilung ''' ein, so erhält man die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße z: |
Version vom 18. Februar 2018, 16:27 Uhr
Inhaltsverzeichnis
Programmbeschreibung
Dieses Applet ermöglicht die Berechnung und graphische Darstellung von Wahrscheinlichkeiten von
- Binomialverteilungen:
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu},$$
$\hspace{0.7cm}$wobei $I$ die Anzahl der binären und statisch voneinander unabhängigen Zufallsgrößen $b_i$ und
$\hspace{0.7cm}p={\rm Pr}(b_i=1)$ die Erfolgswahrscheinlichkeit darstellt, und
- Poissonverteilungen:
$$\hspace{1.5cm}p_\mu = {\rm Pr}(z=\mu)=\frac{ \lambda^\mu}{\mu!}\cdot {\rm e}^{-\lambda},$$
$\hspace{0.7cm}$wobei die Rate$\lambda$ aus $\lambda=I\cdot p$ berechnet werden kann.
Da gleichzeitig bis zu zwei Verteilungsfunktionen eingestellt werden können, können Binomial- und Poissonverteilungen einfach miteinander verglichen werden.
Theoretischer Hintergrund
Wahrscheinlichkeiten der Binomialverteilung
Die Binomialverteilung gehört zu den wichtigsten diskreten Wahrscheinlichkeitsverteilungen und beschreibt die Erfolgswahrscheinlichkeiten von $I$ binären und statistisch voneinander unabhängigen Zufallsgrößen. Zur Berechnung einer solchen Verteilung wird die Formel
$$p_\mu = {\rm Pr}(z=\mu)={I \choose \mu}\cdot p^\mu\cdot ({\rm 1}-p)^{I-\mu}$$
verwendet, wobei
- $I\hspace{0.3cm}$ die Menge aller gleichartigen, binären und statistisch voneinander unabhängigen Zufallsgrößen $b_i$,
- $z = \mu = 0, ..., I\hspace{0.3cm}$ die Menge aller "erfolgreichen" Zufallsgrößen $b_i = 1$,
- $p = {\rm Pr}(b_i=1)\hspace{0.3cm}$ die Erfolgswahrscheinlichkeit und
- ${I \choose \mu} = \frac{I !}{\mu !\cdot (I-\mu) !}\hspace{0.3cm}$ ("$I \text{ über } \mu$") die Anzahl der möglichen Kombinationen bezeichnet.
Es seien $I = 4$ und $p=0.4$.
Für die Wahrscheinlichkeit von $\mu=0$ Erfolgen berechnent wir $${\rm Pr}(z=0)={4\choose 0}\cdot0.4^0\cdot ({\rm 1}-0.4)^{4-0}.$$
Da in diesem Fall für alle Zufallsgrößen $b_i=0$ gilt, gibt es auch nur eine Kombinationsmöglichkeit $({4\choose 0} = 1)$. Als Ergebnis bekommen wir also $${\rm Pr}(z=0)=0.6^4=0.1296.$$
Für $\mu=1$ haben wir ${4\choose 1} = 4$ Kombinationsmöglichkeiten, da die erfolgreiche Zufallsgröße $b_i=1$ an jeder Position $i=1,2,3,4$ auftreten kann. Wir rechnen also $${\rm Pr}(z=1)=4\cdot 0.4^1\cdot 0.6^3 = 0.3456.$$
Führen wir die Berechnung mit dem gleichen Verfahren fort, so ergeben sich für die restlichen Wahrscheinlichkeiten $${\rm Pr}(z=2)=0.3456,$$ $${\rm Pr}(z=3)=0.1536,$$ $${\rm Pr}(z=4)=0.0256.$$
Wahrscheinlichkeiten der Poissonverteilung
Die Poissonverteilung ist ein Sonderfall der Binomialverteilung, für den die Grenzübergänge
- $I → ∞\hspace{0.3cm}$ und $\hspace{0.3cm}p → 0$ gelten. Setzt man diese in die Gleichung für die '''Wahrscheinlichkeiten der Binomialverteilung ''' ein, so erhält man die Auftrittswahrscheinlichkeiten der poissonverteilten Zufallsgröße z: :'"`UNIQ-MathJax10-QINU`"' =='"`UNIQ--h-4--QINU`"'Versuchsdurchführung== <br> In der folgenden Beschreibung bedeutet *Blau: Verteilungsfunktion 1 (im Applet blau markiert) *Rot: Verteilungsfunktion 2 (im Applet rot markiert) <div class="bluebox"> '''(1)''' Setzen Sie Blau: Binomialverteilung $(I=5, p=0.4)$ und Rot: Binomialverteilung $(I=10, p=0.2)$. :Wie lauten die Wahrscheinlichkeiten ${rm Pr}(z=0)$ und ${\rm Pr}(z=1)$? <div style="clear:both;"> </div> </div> $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Blau: }{\rm Pr}(z=0)=0.6^5=7.78\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.4 \cdot 0.6^4=25.92\%$ $\hspace{1.85cm}\text{Rot: }{\rm Pr}(z=0)=0.8^10=10.74\%, \hspace{0.3cm}{\rm Pr}(z=1)=0.2 \cdot 0.8^9=26.84\%$ <div class="bluebox"> '''(2)''' Es gelten die Einstellungen von (1). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(3 \le z \le 5)$? <div style="clear:both;"> </div> </div> $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Es gilt }{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z=3) + {\rm Pr}(z=4) + {\rm Pr}(z=5)\text{, oder}$ $\hspace{3.25cm}{\rm Pr}(3 \le z \le 5) = {\rm Pr}(z \le 5) - {\rm Pr}(z \le 2)$ $\hspace{1.85cm}\text{Blau: }{\rm Pr}(3 \le z \le 5) = 1 - 0.6826 = 0.3174$ $\hspace{1.85cm}\text{Rot: }{\rm Pr}(3 \le z \le 5) = 0.9936 - 0.6778 = 0.3158$ <div class="bluebox"> '''(3)''' Es gelten die Einstellungen von (1). Wie unterscheiden sich Mittelwert $m_1$ und Streuung $\sigma$? <div style="clear:both;"> </div> </div> $\hspace{1.0cm}\Rightarrow\hspace{0.3cm}\text{Mittelwert: }m_1 = I \cdot p\hspace{0.3cm} \Rightarrow\hspace{0.3cm} m_1 = 1 \text{ für beide Verteilungen}$. $\hspace{1.85cm}\text{Streuung: }\sigma = m_1^2 - m_2 \hspace{0.3cm}\Rightarrow\hspace{0.3cm} \sigma_{\rm Blau} = 1.1 \le \sigma_{\rm Rot} = 1.26$ <div class="bluebox"> '''(3)''' Setzen Sie Blau: Binomialverteilung $(I=15, p=0.3)$ und Rot: Poissonverteilung $(\lambda=4.5)$. :Welche Unterschiede ergeben sich in Mittelwert $m_1$ und Streuung $\sigma$ zwischen beiden Verteilungen? <div style="clear:both;"> </div> </div> $\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Poisson: }\hspace{0.2cm}m_1 = \lambda,\hspace{0.2cm} \sigma = {\sqrt \lambda}$ $\hspace{1.85cm} \text{Blau: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 1.77$ $\hspace{1.85cm} \text{Rot: }\hspace{0.2cm} m_1 = 4.5, \hspace{0.3cm}\sigma = 2.12$ <div class="bluebox"> '''(5)''' Es gelten die Einstellungen von (4). Wie groß sind die Wahrscheinlichkeiten ${\rm Pr}(z \gt 10)$ und ${\rm Pr}(z \gt 15)$ <div style="clear:both;"> </div> </div> $\hspace{1.0cm}\Rightarrow\hspace{0.3cm} \text{Binomial: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - {\rm Pr}(z \le 10) = 1 - 0.9993 = 0.0007;\hspace{0.3cm} {\rm Pr}(z \gt 15) = 0$. $\hspace{1.85cm}\text{Poisson: }\hspace{0.2cm} {\rm Pr}(z \gt 10) = 1 - 0.9933 = 0.0067;\hspace{0.3cm}{\rm Pr}(z \gt 15) \gt 0\hspace{0.5cm}\text{Näherung: }\hspace{0.2cm}{\rm Pr}(z \gt 15) \le {\rm Pr}(z = 16) = \lambda^{16}/16!$