Aufgaben:Aufgabe 4.7: Zum RAKE-Empfänger: Unterschied zwischen den Versionen
K (Guenter verschob die Seite Aufgabe 4.7: RAKE-Empfänger nach Aufgabe 4.7: Zum RAKE-Empfänger) |
|||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS}} | {{quiz-Header|Buchseite=Beispiele von Nachrichtensystemen/Nachrichtentechnische Aspekte von UMTS}} | ||
− | [[Datei:P_ID1976__Mod_Z_5_5.png|right|frame|Zweiwegekanal | + | [[Datei:P_ID1976__Mod_Z_5_5.png|right|frame|Zweiwegekanal & RAKE]] |
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet: | Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet: | ||
Zeile 8: | Zeile 8: | ||
:$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$ | :$$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$ | ||
− | Die Verzögerung auf dem Nebenpfad sei $\tau = 1 \ \rm | + | Die Verzögerung auf dem Nebenpfad sei $\tau = 1 \ \rm µ s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten $K, h_{0}, h_{1}, \tau_{0}$ und $\tau_{1}$. |
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form | Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form | ||
Zeile 19: | Zeile 19: | ||
:$$K= \frac{1}{h_0^2 + h_1^2}.$$ | :$$K= \frac{1}{h_0^2 + h_1^2}.$$ | ||
− | Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale $r(t)$ und $b(t)$, wenn $s(t)$ ein Rechteck der Höhe $1$ und der Breite $T = 5 \ \rm | + | Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale $r(t)$ und $b(t)$, wenn $s(t)$ ein Rechteck der Höhe $1$ und der Breite $T = 5 \ \rm µ s$ ist. |
+ | |||
+ | |||
+ | |||
+ | |||
+ | |||
+ | ''Hinweise:'' | ||
+ | *Die Aufgabegehört zum Kapitel [[Beispiele_von_Nachrichtensystemen/Nachrichtentechnische_Aspekte_von_UMTS|Nachrichtentechnische Aspekte von UMTS]]. | ||
+ | *Bezug genommen wird auch auf die Seite [[Modulationsverfahren/Fehlerwahrscheinlichkeit_der_PN–Modulation#Untersuchungen_zum_RAKE.E2.80.93Empf.C3.A4nger|Untersuchungen zum RAKE–Empfänger]] im Buch „Modulationsverfahren”. | ||
+ | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
− | |||
− | |||
===Fragebogen=== | ===Fragebogen=== | ||
Zeile 39: | Zeile 46: | ||
- Es gilt $H_{\rm K}(f = 0) = 2$. | - Es gilt $H_{\rm K}(f = 0) = 2$. | ||
+ $H_{\rm K}(f)$ ist komplexwertig. | + $H_{\rm K}(f)$ ist komplexwertig. | ||
− | + $H_{\rm K}(f)$| ist eine mit der Frequenz $1/ \tau$ periodische Funktion. | + | + $|H_{\rm K}(f)$| ist eine mit der Frequenz $1/ \tau$ periodische Funktion. |
− | {Setzen Sie $K = 1, h_{0} = 0.6$ | + | {Setzen Sie $K = 1, h_{0} = 0.6$, $h_{1} = 0.4$. Bestimmen Sie die Verzögerungen $\tau_{0}$ und $\tau_{1}$, damit die $h_{\rm KR}(t)$–Gleichung mit $A_{0} = A_{2}$ erfüllt wird. |
|type="{}"} | |type="{}"} | ||
− | $\tau_{0} \ = \ $ { 1 3% } $\ \rm | + | $\tau_{0} \ = \ $ { 1 3% } $\ \rm µ s$ |
− | $\tau_{1} \ = \ $ { 0 3% } $\ \rm | + | $\tau_{1} \ = \ $ { 0 3% } $\ \rmµ s$ |
{Welcher Wert ist für die Konstante $K$ zu wählen? | {Welcher Wert ist für die Konstante $K$ zu wählen? | ||
Zeile 53: | Zeile 60: | ||
|type="[]"} | |type="[]"} | ||
+ Der Maximalwert von $r(t)$ ist $1$. | + Der Maximalwert von $r(t)$ ist $1$. | ||
− | - Die Breite von $r(t)$ ist $7 \ \rm | + | - Die Breite von $r(t)$ ist $7 \ \rm µ s$. |
− | - Der Maximalwert von $b(t)$ ist $1 \ \rm | + | - Der Maximalwert von $b(t)$ ist $1 \ \rm µ s$. |
− | + Die Breite von $b(t)$ ist $7 \ \rm | + | + Die Breite von $b(t)$ ist $7 \ \rm µ s$. |
</quiz> | </quiz> | ||
Version vom 5. März 2018, 17:37 Uhr
Die Grafik zeigt einen Zweiwegekanal (gelbe Hinterlegung). Die entsprechende Beschreibungsgleichung lautet:
- $$r(t) =0.6 \cdot s(t) + 0.4 \cdot s (t - \tau) \hspace{0.05cm}.$$
Die Verzögerung auf dem Nebenpfad sei $\tau = 1 \ \rm µ s$. Darunter gezeichnet ist die Struktur eines RAKE–Empfängers (grüne Hinterlegung) mit den allgemeinen Koeffizienten $K, h_{0}, h_{1}, \tau_{0}$ und $\tau_{1}$.
Der RAKE–Empfänger hat die Aufgabe, die Energie der beiden Signalpfade zu bündeln und dadurch die Entscheidung sicherer zu machen. Die gemeinsame Impulsantwort von Kanal und RAKE–Empfänger kann in der Form
- $$h_{\rm KR}(t) = A_0 \cdot \delta (t ) + A_1 \cdot \delta (t - \tau) + A_2 \cdot \delta (t - 2\tau)$$
angegeben werden, allerdings nur dann, wenn die RAKE–Koeffizienten $h_{0}, h_{1}, \tau_{0}$ und $\tau_{1}$ geeignet gewählt werden. Der Hauptanteil von $h_{\rm KR}(t)$ soll bei $t = \tau$ liegen.
Die Konstante $K$ ist aus Normierungsgründen notwendig. Um den Einfluss von AWGN–Rauschen nicht zu verfälschen, muss folgende Bedingung erfüllt sein:
- $$K= \frac{1}{h_0^2 + h_1^2}.$$
Gesucht sind außer den geeigneten RAKE–Parametern auch die Signale $r(t)$ und $b(t)$, wenn $s(t)$ ein Rechteck der Höhe $1$ und der Breite $T = 5 \ \rm µ s$ ist.
Hinweise:
- Die Aufgabegehört zum Kapitel Nachrichtentechnische Aspekte von UMTS.
- Bezug genommen wird auch auf die Seite Untersuchungen zum RAKE–Empfänger im Buch „Modulationsverfahren”.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(1) Die Impulsantwort $h_{\rm K}(t)$ ergibt sich als das Empfangssignal $r(t)$, wenn am Eingang ein Diracimpuls anliegt $\Rightarrow s(t) = \delta(t)$. Daraus folgt
- $$h_{\rm K}(t) = 0.6 \cdot \delta (t ) + 0.4 \cdot \delta (t - \tau) \hspace{0.05cm}.$$
Richtig ist also der Lösungsvorschlag 1.
(2) Der Kanalfrequenzgang $H_{\rm K}(f)$ ist definitionsgemäß die Fouriertransformierte der Impulsantwort $h_{\rm K}(t)$. Mit dem Verschiebungssatz ergibt sich hierfür:
- $$H_{\rm K}(f) = 0.6 + 0.4 \cdot {\rm e}^{ \hspace{0.03cm}{\rm j} \hspace{0.03cm} \cdot \hspace{0.03cm}2 \pi f \tau}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} H_{\rm K}(f= 0) = 0.6 + 0.4 = 1 \hspace{0.05cm}.$$
Der erste Lösungsvorschlag ist dementsprechend falsch im Gegensatz zu den beiden anderen: $H_{\rm K}(f)$ ist komplexwertig und der Betrag ist periodisch mit $1/\tau$, wie die nachfolgende Rechnung zeigt:
- $$|H_{\rm K}(f)|^2 \ = \ \left [0.6 + 0.4 \cdot \cos(2 \pi f \tau) \right ]^2 + \left [ 0.4 \cdot \sin(2 \pi f \tau) \right ]^2 = $$
- $$\hspace{1.53cm} \ = \ \left [0.6^2 + 0.4^2 \cdot \left ( \cos^2(2 \pi f \tau) + \sin^2(2 \pi f \tau)\right ) \right ] + $$
- $$\hspace{1.53cm} \ + \ 2 \cdot 0.6 \cdot 0.4 \cdot \cos(2 \pi f \tau)$$
- $$\Rightarrow \hspace{0.3cm}|H_{\rm K}(f)| = \sqrt { 0.52 + 0.48 \cdot \cos(2 \pi f \tau) } \hspace{0.05cm}.$$
Für $f = 0$ ist $|H_{\rm K}(f)| = 1$. Im jeweiligen Frequenzabstand $1/\tau$ wiederholt sich dieser Wert.
(3) Wir setzen zunächst vereinbarungsgemäß $K = 1$. Insgesamt kommt man über vier Wege von $s(t)$ zum Ausgangssignal $b(t)$. Um die vorgegebene $h_{\rm KR}(t)$–Gleichung zu erfüllen, muss entweder $\tau_{0} = 0$ gelten oder $\tau_{1}= 0$. Mit $\tau_{0} = 0$ erhält man für die Impulsantwort:
- $$ h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t ) + 0.4 \cdot h_0 \cdot \delta (t - \tau) +$$
- $$\hspace{1.1cm}\ + \ 0.6 \cdot h_1 \cdot \delta (t -\tau_1) + 0.4 \cdot h_1 \cdot \delta (t - \tau-\tau_1) \hspace{0.05cm}.$$
Um die „Hauptenergie” auf einen Zeitpunkt bündeln zu können, müsste dann $\tau_{1} = \tau$ gewählt werden. Mit $h_{0} = 0.6$ und $h_{1} = 0.4$ erhält man dann $A_{0} \neq A_{2}$:
- $$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm \mu s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
Dagegen ergibt sich mit $h_{0} = 0.6$, $h_{1} = 0.4, \tau_{0} = \tau$ und $\tau_{1} = 0$:
- $$h_{\rm KR}(t) \ = \ 0.6 \cdot h_0 \cdot \delta (t - \tau ) + 0.4 \cdot h_0 \cdot \delta (t - 2\tau) +$$
- $$\hspace{1.1cm} \ + \ 0.6 \cdot h_1 \cdot \delta (t) + 0.4 \cdot h_1 \cdot \delta (t - \tau)= $$
- $$\hspace{1.1cm} \ = \ 0.24 \cdot \delta (t ) +0.52 \cdot \delta (t - \tau) + 0.24 \cdot \delta (t - 2\tau) \hspace{0.05cm}.$$
Hier ist die Zusatzbedingung $A_{0} = A_{2}$ erfüllt. Somit lautet das gesuchte Ergebnis:
- $$\tau_0 = \tau \hspace{0.15cm}\underline {= 1\,{\rm \mu s}} \hspace{0.05cm},\hspace{0.2cm}\tau_1 \hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
(4) Es gilt entsprechend der angegebenen Gleichung
- $$K= \frac{1}{h_0^2 + h_1^2} = \frac{1}{0.6^2 + 0.4^2} = \frac{1}{0.52}\hspace{0.15cm}\underline { \approx 1.923 } \hspace{0.05cm}.$$
Damit erhält man für die gemeinsame Impulsantwort (es gilt $0.24/0.52 = 6/13$):
- $$h_{\rm KR}(t) = \frac{6}{13} \cdot \delta (t ) + 1.00 \cdot \delta (t - \tau) + \frac{6}{13} \cdot \delta (t - 2\tau)\hspace{0.05cm}.$$
(5) Für das Empfangssignal $r(t)$ und für das RAKE–Ausgangssignal $b(t)$ gilt:
- $$ r(t) \ = \ 0.6 \cdot s(t) + 0.4 \cdot s (t - 1\,{\rm \mu s})\hspace{0.05cm},$$
- $$ b(t) \ = \ \frac{6}{13} \cdot s(t) + 1.00 \cdot s (t - 1\,{\rm \mu s}) + \frac{6}{13} \cdot s (t - 2\,{\rm \mu s}) \hspace{0.05cm}.$$
Richtig sind die Aussagen 1 und 4, wie die Grafik zeigt. Bezüglich des AWGN–Rauschverhaltens sind $r(t)$ und $b(t)$ vergleichbar.