Aufgaben:Aufgabe 3.6: Einschwingverhalten: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 41: | Zeile 41: | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. | *Die Aufgabe gehört zum Kapitel [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation|Laplace–Rücktransformation]]. | ||
− | + | ||
*Die Berechnungen zur Teilaufgabe (6) sind umfangreich. | *Die Berechnungen zur Teilaufgabe (6) sind umfangreich. | ||
*Zur Berechnung der Signale $y_{\rm CK}(t)$ und $y_{\rm SK}(t)$ bietet sich zum Beispiel der [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatz]] an. | *Zur Berechnung der Signale $y_{\rm CK}(t)$ und $y_{\rm SK}(t)$ bietet sich zum Beispiel der [[Lineare_zeitinvariante_Systeme/Laplace–Rücktransformation#Formulierung_des_Residuensatzes|Residuensatz]] an. |
Version vom 29. Mai 2018, 13:02 Uhr
Wir betrachten in dieser Aufgabe ein Cosinussignal $c(t)$ mit der Amplitude $1$ und der Periodendauer $T = 1 \ \rm µ s$, das für alle Zeiten $t$ (im Bereich $ \pm \infty$) definiert ist:
- $$c(t) = \cos(2\pi \cdot {t}/{T}) \hspace{0.05cm} .$$
Dagegen beginnt das kausale Cosinussignal $c_{\rm K}(t)$ (rote Kurve) erst zum Einschaltzeitpunkt $t = 0$:
- $$c_{\rm K}(t)= \left\{ \begin{array}{c} c(t) \\ 0 \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array}\begin{array}{*{20}c} { t \ge 0\hspace{0.05cm},} \\ { t < 0\hspace{0.05cm}.} \end{array}$$
Für das beidseitig unbegrenzte Signal $c(t)$ kann man nur das Fourierspektrum angeben:
- $$C(f) = {1}/{ 2} \cdot \delta (f - f_0) + {1}/{ 2} \cdot \delta (f + f_0) \quad {\rm mit} \quad f_0 = {1}/{ T}= 1\,\,{\rm MHz.}$$
Dagegen ist für das kausale Cosinussignal $c_{\rm K}(t)$ auch die Laplace–Transformierte angebbar:
- $$C_{\rm L}(p) = \frac {p} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
Entsprechend gilt für die Laplace–Transformierte der kausalen Sinusfunktion $s_{\rm K}(t)$:
- $$S_{\rm L}(p) = \frac {2 \pi/T} { (p-{\rm j} \cdot 2 \pi/T)\cdot (p+{\rm j} \cdot 2 \pi/T)}\hspace{0.05cm} .$$
Die beidseitig unbegrenzte Sinusfunktion wird mit $s(t)$ bezeichnet und ist als blau–gepunktete Kurve im unteren Diagramm dargestellt.
Die Signale $c(t)$, $c_{\rm K}(t)$, $s(t)$ und $s_{\rm K}(t)$ werden nun an den Eingang eines Tiefpasses erster Ordnung mit der Übertragungsfunktion (bzw. der Impulsantwort)
- $$H_{\rm L}(p) = \frac {2 /T} { p + 2 /T} \quad \bullet\!\!-\!\!\!-^{\hspace{-0.25cm}\rm L}\!\!\!-\!\!\circ\quad h(t) = {2}/{T} \cdot {\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}t/T}$$
angelegt. Die entsprechenden Ausgangssignale werden mit $y_{\rm C}(t)$, $y_{\rm CK}(t)$, $y_{\rm S}(t)$ und $y_{\rm SK}(t)$ bezeichnet. Diese Signale sollen in dieser Aufgabe berechnet und zueinander in Bezug gesetzt werden.
Hinweise:
- Die Aufgabe gehört zum Kapitel Laplace–Rücktransformation.
- Die Berechnungen zur Teilaufgabe (6) sind umfangreich.
- Zur Berechnung der Signale $y_{\rm CK}(t)$ und $y_{\rm SK}(t)$ bietet sich zum Beispiel der Residuensatz an.
Fragebogen
Musterlösung
- $$H(f) = \frac {2 /T} { {\rm j} \cdot 2 \pi f + 2 /T}= \frac {f_0} { {\rm j} \cdot \pi f + f_0} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} H(f= f_0) = \frac {1} { 1 + {\rm j} \cdot \pi }$$
- $$\Rightarrow \hspace{0.3cm} |H(f= f_0)| = \frac {1} { \sqrt{1 + \pi^2 }} \hspace{0.15cm}\underline{= 0.303}\hspace{0.05cm},\hspace{0.2cm}a(f= f_0)= - {\rm ln}\,\, |H(f= f_0)| \hspace{0.15cm}\underline{\approx 1.194\,\,{\rm Np}}$$
- $$\Rightarrow \hspace{0.3cm} {\rm arc}\,H(f= f_0)= - {\rm arctan}\,(\pi) \hspace{0.15cm}\underline{\approx -72^\circ} \hspace{0.05cm}, \hspace{0.2cm}b(f= f_0)= -{\rm arc}\,H(f= f_0) \hspace{0.15cm}\underline{\approx +72^\circ} \hspace{0.05cm}.$$
(2) Das Ausgangssignal $y_{\rm C}(t)$ ist gegenüber dem Eingangssignal $c(t)$ um den Faktor $0.303$ gedämpft und um $\tau \approx 72/360 \cdot T = T/5$ verzögert. Man kann dieses Signal somit auch folgendermaßen beschreiben:
- $$y_{\rm C}(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \cos(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y_{\rm C}(t=0) = \frac {1} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx 0.092} \hspace{0.05cm}.$$
Dieses Signal ist in der linken Grafik zur Musterlösung (5) blau–gepunktet dargestellt.
(3) Das Signal $y_{\rm S}(t)$ ist gegenüber $s(t)$ ebenfalls um den Dämpfungsfaktor $0.303$ kleiner und um die Zeitdauer $\tau = T/5$ verzögert.
Es lässt sich wie folgt beschreiben:
- $$y_{\rm S}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= 0.303 \cdot \sin(2\pi \cdot \frac{t-T/5}{T}) \hspace{0.3cm} \Rightarrow \hspace{0.3cm} y_{\rm S}(t=0) = -\frac {\pi} { {1 + \pi^2 }} \hspace{0.15cm}\underline{\approx -0.289} \hspace{0.05cm}.$$
Dieses Signal ist in der rechten Grafik zur Musterlösung (5) blau–gepunktet skizziert.
(4) Bei $T_h$ soll die Impulsantwort $h(t)$ auf $1\%$ des Maximalwertes abgeklungen sein. Somit gilt:
- $${\rm e}^{\hspace{0.05cm}-\hspace{0.03cm}2 \hspace{0.03cm}T_{ h}/T} = 0.01 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {T_{ h}}/{T} =\frac{1}{2} \cdot {\rm ln}\,\, \frac{1}{0.01} \hspace{0.15cm}\underline{\approx 2.3} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}h(t=0) = {2}/{T}\hspace{0.05cm}, \hspace{0.2cm}h(t=T_{ h}) = {0.02}/{T}\hspace{0.05cm}.$$
(5) Richtig sind die Aussagen 1 und 2:
- Die kausalen Signale $y_{\rm CK}(t)$ und $y_{\rm SK}(t)$ müssen für $t < 0$ identisch Null sein.
- Da aber die Impulsantwort $h(t)$ des betrachteten Filters für $t > T_h$ (nahezu) verschwindet, ist es nach Abschluss des Einschwingvorganges egal, ob das zeitlich unbegrenzte Cosinussignal $c(t)$ oder das kausale Signal $c_{\rm K}(t)$ am Eingang anliegt.
- Das gleiche gilt für die Sinussignale: Für $t >T_{ h}$ ist $y_{\rm SK}(t)=y_{\rm S}(t)$.
Die Grafik zeigt links die Ausgangssignale $y_{\rm C}(t)$ und $y_{\rm CK}(t)$ bei cosinusförmigem Eingang und rechts die Signale $y_{\rm S}(t)$ und $y_{\rm SK}(t)$ bei sinusförmigem Eingang. Beachten Sie die Laufzeit von $T/5$ (entsprechend der Phase $72^\circ$ in beiden Fällen.
- Bei $y_{\rm CK}(t)$ sind die ersten Wellenberge kleiner als $1$, um die richtige Phasenlage von $y_{\rm C}(t)$ zu erreichen.
- Bei $y_{\rm SK}(t)$ sind dagegen die ersten Wellenberge größer als $1$, um die richtige Phasenlage von $y_{\rm S}(t)$ zu erreichen.
(6) Mit $p_{\rm x1}= {\rm j} \cdot {2\pi}/{T} , \hspace{0.1cm}p_{\rm x2}= -{\rm j} \cdot {2\pi}/{T} \hspace{0.1cm} p_{\rm x3}= -{2}/{T} \hspace{0.05cm}$ kann für die Laplace–Transformierte des Signals $y_{\rm CK}(t)$ geschrieben werden:
- $$Y_{\rm L}(p) = \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}2})(p-p_{{\rm x}3})} \hspace{0.05cm}.$$
Die Zeitfunktion $y_{\rm CK}(t)$ setzt sich somit nach dem Residuensatz aus drei Anteilen zusammen:
- Der erste Anteil ergibt sich unter Berücksichtigung von $p_{\rm x2}= -p_{\rm x1}$ zu
- $$y_1(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}} \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}2})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}1}}= \frac {-p_{{\rm x}3}\cdot p_{{\rm x}1}} { (p_{{\rm x}1}-p_{{\rm x}2})(p_{{\rm x}1}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t}= \frac {-p_{{\rm x}3}/2} { p_{{\rm x}1}-p_{{\rm x}3}}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
- In gleicher Weise erhält man für den zweiten Anteil:
- $$y_2(t)= {\rm Res} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}} \hspace{0.05cm}\{Y_{\rm L}(p)\cdot {\rm e}^{\hspace{0.03cm}p t}\}= \frac {-p_{{\rm x}3}\cdot p} { (p-p_{{\rm x}1})(p-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p \hspace{0.05cm}t} \bigg |_{p \hspace{0.05cm}= \hspace{0.05cm}p_{{\rm x}2}}=\frac {-p_{{\rm x}3}\cdot p_{{\rm x}2}} { (p_{{\rm x}2}-p_{{\rm x}1})(p_{{\rm x}2}-p_{{\rm x}3})}\cdot {\rm e}^{\hspace{0.03cm}p_{{\rm x}2}\cdot \hspace{0.03cm}t}= \frac {p_{{\rm x}3}/2} { p_{{\rm x}1}+p_{{\rm x}3}}\cdot {\rm e}^{-p_{{\rm x}1}\cdot \hspace{0.03cm}t} \hspace{0.05cm} .$$
- Fasst man beide Anteile zusammen und berücksichtigt die Werte von $p_{\rm x1}$ und $p_{\rm x3}$, so erhält man
- $$y_{1\hspace{0.03cm}+2}(t)= \frac {1/T} { 2/T + {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm} t/T}+\frac {1/T} { 2/T - {\rm j} \cdot 2\pi /T} \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}= \frac {1/2} { 1 + {\rm j} \cdot \pi } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2} { 1 - {\rm j} \cdot \pi } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}$$
- $$\Rightarrow \hspace{0.3cm} y_{1\hspace{0.03cm}+2}(t)\hspace{0.25cm} = \frac {1/2 \cdot (1 - {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{\hspace{0.03cm}{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T}+\frac {1/2 \cdot (1 + {\rm j} \cdot \pi)} { 1 + \pi^2 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm}2\pi \hspace{0.03cm}t/T} \hspace{0.05cm} .$$
- Mit Hilfe des Eulerschen Satzes kann hierfür auch geschrieben werden:
- $$y_{1\hspace{-0.03cm}+2} (t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})} { {1 + \pi^2 }}= y_{\rm C}(t)\hspace{0.05cm}.$$
Man erkennt, dass $y_{1\hspace{0.03cm}+2}(t)$ gleich dem in der Teilaufgabe (2) berechneten Signal $y_{\rm C}(t)$ ist.
- Schließlich erhält man für das letzte Residuum:
- $$y_3(t)=\frac {-p_{{\rm x}3}^2} { (p_{{\rm x}3}-p_{{\rm x}1}) (p_{{\rm x}3}-p_{{\rm x}2})} \cdot {\rm e}^{\hspace{0.05cm}p_{{\rm x}3}\cdot \hspace{0.03cm}t}= \frac {-(2/T)^2 \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { (-2/T-{\rm j} \cdot 2\pi /T) (-2/T+{\rm j} \cdot 2\pi /T)} =\frac {- {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T} } { (1+{\rm j} \cdot \pi ) (1-{\rm j} \cdot \pi)} =\frac {- {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { 1+\pi^2} \hspace{0.05cm} .$$
- Damit lautet das Ausgangssignal bei kausalem Cosinussignal am Eingang:
- $$y_{\rm CK}(t) = y_1(t)+y_2(t)+y_3(t) = \frac { \cos(2\pi {t}/{T}) + \pi \cdot \sin(2\pi {t}/{T})-{\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
- $$\Rightarrow \hspace{0.3cm}y_{\rm CK}(t = {T}/{5}) = \frac { \cos(72^\circ) + \pi \cdot \sin(72^\circ)-{\rm e}^{\hspace{0.05cm}-0.4}} { {1 + \pi^2 }} \hspace{0.15cm}\underline{ \approx 0.24} < 0.303\hspace{0.05cm} .$$
- Zum Vergleich: Das Signal $y_{\rm C}(t)$ hat zu diesem Zeitpunkt den Wert $0.303$.
- Dagegen ergibt sich beim kausalen Sinussignal am Eingang allgemein und speziell zum Zeitpunkt des ersten Maximums bei $t = 0.45 \cdot T$:
- $$y_{\rm SK}(t) = \frac { -\pi \cdot \cos(2\pi {t}/{T}) + \sin(2\pi {t}/{T})+\pi \cdot {\rm e}^{\hspace{0.05cm}-2 \hspace{0.03cm}t/T}} { {1 + \pi^2 }}$$
- $$\Rightarrow \hspace{0.3cm} y_{\rm SK}(t = 0.45 \cdot T) = \frac { -\pi \cdot \cos(162^\circ) + \sin(162^\circ)+\pi \cdot{\rm e}^{\hspace{0.05cm}-0.9}} { {1 + \pi^2 }} \approx 0.42 > 0.303\hspace{0.05cm} .$$