Aufgaben:Aufgabe 1.3: Systemvergleich beim AWGN–Kanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “)
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID960__Mod_A_1_3.png|right|frame|Zum Systemvergleich beim AWGN–Kanal]]
+
[[Datei:P_ID960__Mod_A_1_3.png|right|frame|Systemvergleich beim AWGN–Kanal]]
Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten[[Modulationsverfahren/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|AWGN–Kanal]] aus und beschreiben folgendes doppelt–logarithmische Diagramm:
+
Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  [[Modulationsverfahren/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|AWGN–Kanal]]  aus und beschreiben folgendes doppelt–logarithmische Diagramm:
*Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert) $10 · \lg ρ_v$ in dB an.
+
*Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert)  $10 · \lg ρ_v$  in dB an.
*Auf der Abszisse ist $10 · \lg ξ$ aufgetragen, wobei für die normierte Leistungskenngröße gilt:
+
*Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen; für die normierte Leistungskenngröße gilt:
 
:$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
 
:$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
*In $ξ$ sind also die Sendeleistung $P_{\rm S}$, der Kanaldämpfungsfaktor $α_{\rm K}$, die Rauschleistungsdichte $N_0$ sowie die Bandbreite $B_{\rm NF}$ des Nachrichtensignals in geeigneter Weise zusammengefasst.
+
*In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$, der Kanaldämpfungsfaktor  $α_{\rm K}$, die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
 
* Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
 
* Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
 
:$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm
 
:$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm
Zeile 15: Zeile 15:
 
B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$
 
B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$
  
In der Grafik sind zwei Systeme eingezeichnet, deren (x, y)–Verlauf wie folgt beschrieben werden kann:
+
In der Grafik sind zwei Systeme eingezeichnet, deren $(x, y)$–Verlauf wie folgt beschrieben werden kann:
*Das '''System A''' ist gekennzeichnet durch die folgende Gleichung:
+
*Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
 
:$$y = x+1.$$
 
:$$y = x+1.$$
*Entsprechend gilt für das '''System B:'''
+
*Entsprechend gilt für das  $\text{System B}$:
 
:$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$
 
:$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$
 
Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:
 
Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:
 
:$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$
 
:$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$
So steht $x = 4$ für $10 · \lg ξ = 40$ dB bzw. $ξ = 10^4$ und $y = 5$ steht für $10 · \lg ρ_v= 50$ dB, also $ρ_v = 10^5$.
+
So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$  bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.
 +
 
 +
 
 +
 
 +
 
  
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
+
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Untersuchungen_beim_AWGN.E2.80.93Kanal|Untersuchungen beim AWGN-Kanal]].
+
*Bezug genommen wird insbesondere auf die Seite  [[Modulationsverfahren/Qualitätskriterien#Untersuchungen_beim_AWGN.E2.80.93Kanal|Untersuchungen beim AWGN-Kanal]].
*Durch die Angabe der Leistungen in $\rm W$att sind diese unabhängig vom Bezugswiderstand $R$.
+
*Durch die Angabe der Leistungen in  $\rm W$att sind diese unabhängig vom Bezugswiderstand  $R$.
 
   
 
   
  
Zeile 35: Zeile 39:
  
 
<quiz display=simple>
 
<quiz display=simple>
{Welcher Sinken–Störabstand (in dB) ergibt sich bei '''System A''' mit $P_{\rm S}= 5 \;{\rm kW}$, &nbsp; $\alpha_{\rm
+
{Welcher Sinken–Störabstand (in dB) ergibt sich bei &nbsp;$\text{System A}$&nbsp; mit <br>$P_{\rm S}= 5 \;{\rm kW}$, &nbsp; $\alpha_{\rm
 
K} = 0.001$, &nbsp; $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?
 
K} = 0.001$, &nbsp; $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
  
{Es wird nun $10 · \lg \hspace{0.05cm} ρ_v ≥ 60$ dB gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?
+
{Es wird nun &nbsp;$10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$&nbsp; gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?
 
|type="[]"}
 
|type="[]"}
- Erhöhung der Sendeleistung von $P_{\rm S}= 5$ kW auf $10$ kW.
+
- Erhöhung der Sendeleistung von &nbsp;$P_{\rm S}= 5\text{ kW}$&nbsp; auf $10\text{ kW}$&nbsp;.
+ Erhöhung des Kanaldämpfungsfaktors von $α_{\rm K} = 0.001$ auf $0.004$.
+
+ Erhöhung des Kanaldämpfungsfaktors von &nbsp;$α_{\rm K} = 0.001$&nbsp; auf &nbsp;$0.004$.
+ Reduzierung der Rauschleistungsdichte auf $N_0=10^{–11 }$ W/Hz .
+
+ Reduzierung der Rauschleistungsdichte auf &nbsp;$N_0=10^{–11 }\text{ W/Hz}$.
- Erhöhung der NF–Bandbreite von $B_{\rm NF}= 5$ kHz auf $6$ kHz.
+
- Erhöhung der NF–Bandbreite von &nbsp;$B_{\rm NF}= 5\text{ kHz}$&nbsp; auf &nbsp;$\text{ kHz}$.
  
{Welcher Störabstand ergibt sich bei '''System B''' mit $10 · \lg ξ = 40$ dB?
+
{Welcher Störabstand ergibt sich bei &nbsp;$\text{System B}$&nbsp; mit &nbsp;$10 · \lg ξ = 40\text{ dB}$?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
  
{Gefordert wird der Störabstand $10 · \lg ρ_v = 50$ dB. Welche Sendeleistung $P_{\rm S}$ genügt bei '''System B''', um diese Qualität zu erzielen?
+
{Gefordert wird der Störabstand &nbsp;$10 · \lg ρ_v = 50\text{ dB}$. Welche Sendeleistung &nbsp;$P_{\rm S}$ genügt bei &nbsp;$\text{System B}$, um diese Qualität zu erzielen?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.3 3% } $\ \text{ kW }$
 
$P_{\rm S} \ = \ $ { 0.3 3% } $\ \text{ kW }$
  
{Für welchen Wert von $10 · \lg ξ$ ist die Verbesserung von '''System B''' gegenüber '''System A''' am größten?
+
{Für welchen Wert von &nbsp;$10 · \lg ξ$&nbsp; ist die Verbesserung von &nbsp;$\text{System B}$&nbsp; gegenüber &nbsp;$\text{System A}$&nbsp; am größten?
 
|type="{}"}
 
|type="{}"}
 
$10 · \lg \hspace{0.05cm} ξ \ = \ ${ 27.9 3% } $\ \text{dB}$
 
$10 · \lg \hspace{0.05cm} ξ \ = \ ${ 27.9 3% } $\ \text{dB}$

Version vom 3. Dezember 2018, 15:13 Uhr

Systemvergleich beim AWGN–Kanal

Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  AWGN–Kanal  aus und beschreiben folgendes doppelt–logarithmische Diagramm:

  • Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert)  $10 · \lg ρ_v$  in dB an.
  • Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen; für die normierte Leistungskenngröße gilt:
$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
  • In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$, der Kanaldämpfungsfaktor  $α_{\rm K}$, die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
  • Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$

In der Grafik sind zwei Systeme eingezeichnet, deren $(x, y)$–Verlauf wie folgt beschrieben werden kann:

  • Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
$$y = x+1.$$
  • Entsprechend gilt für das  $\text{System B}$:
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$

Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:

$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$

So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$  bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.




Hinweise:


Fragebogen

1

Welcher Sinken–Störabstand (in dB) ergibt sich bei  $\text{System A}$  mit
$P_{\rm S}= 5 \;{\rm kW}$,   $\alpha_{\rm K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$ und $B_{\rm NF}= 5\; {\rm kHz}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

2

Es wird nun  $10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$  gefordert. Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?

Erhöhung der Sendeleistung von  $P_{\rm S}= 5\text{ kW}$  auf $10\text{ kW}$ .
Erhöhung des Kanaldämpfungsfaktors von  $α_{\rm K} = 0.001$  auf  $0.004$.
Reduzierung der Rauschleistungsdichte auf  $N_0=10^{–11 }\text{ W/Hz}$.
Erhöhung der NF–Bandbreite von  $B_{\rm NF}= 5\text{ kHz}$  auf  $\text{ kHz}$.

3

Welcher Störabstand ergibt sich bei  $\text{System B}$  mit  $10 · \lg ξ = 40\text{ dB}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

4

Gefordert wird der Störabstand  $10 · \lg ρ_v = 50\text{ dB}$. Welche Sendeleistung  $P_{\rm S}$ genügt bei  $\text{System B}$, um diese Qualität zu erzielen?

$P_{\rm S} \ = \ $

$\ \text{ kW }$

5

Für welchen Wert von  $10 · \lg ξ$  ist die Verbesserung von  $\text{System B}$  gegenüber  $\text{System A}$  am größten?

$10 · \lg \hspace{0.05cm} ξ \ = \ $

$\ \text{dB}$


Musterlösung

(1)  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu

$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$

Damit ergibt sich der Hilfsordinatenwert $y = 5$, was zum Sinken-Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$ führt.


(2)  Richtig sind also die Alternativen 2 und 3:

Diese Forderung entspricht gegenüber dem bisher betrachteten System einer Erhöhung des Störabstandes um $10$ dB, so dass auch $10 · \lg \hspace{0.05cm}ξ$ um $10$ dB erhöht werden muss:

$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$

Ein $10$–fach größerer $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:

  • durch die Sendeleistung $P_{\rm S} = 50$ kW statt $5$ kW,
  • durch den Dämpfungsfaktor $α_{\rm K} = 0.00316$ anstelle von $0.001$,
  • durch die Rauschleistungsdichte $N_0 = 10^{ –11 }$ W/Hz statt $10^{ –10 }$ W/Hz,
  • durch die Bandbreite $B_{\rm NF} = 0.5$ kHz statt $5$ kHz.


(3)  Für $10 · \lg \hspace{0.05cm} ξ = 40$ dB ist die Hilfsgröße $x = 4$. Damit ergibt sich für die Hilfsgröße der Ordinate:

$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$

Dies entspricht dem Sinken–Störabstand $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem System A um $7$ dB.


(4)  Diese Problemstellung wird durch folgende Gleichung beschrieben:

$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$

Bei System A war hierfür $10 · \lg \hspace{0.05cm} \xi = 40$ dB notwendig, was bei den weiter gegebenen Zahlenwerten durch $P_{\rm S} = 5$ kW erreicht wurde. Nun kann die Sendeleistung um etwa $12.1$ dB verringert werden:

$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$

Das bedeutet: Bei System B wird mit nur 6% der Sendeleistung von System A – also mit nur $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.


(5)  Wir bezeichnen mit V (steht für Verbesserung) den größeren Sinken–Störabstand von System B gegenüber System A:

$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$

Durch Nullsetzen der Ableitung ergibt sich derjenige $x$–Wert, der zur maximalen Verbesserung führt:

$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$

Es ergibt sich also genau der in der Teilaufgabe (4) behandelte Fall mit $10 · \lg ρ_υ = 50$ dB, während der Störabstand bei System A nur $37.9$ dB beträgt. Die Verbesserung ist demnach $12.1$ dB.