Aufgaben:Aufgabe 1.3Z: Nochmals Rayleigh–Fading?: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 1: | Zeile 1: | ||
{{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}} | {{quiz-Header|Buchseite=Mobile Kommunikation/Wahrscheinlichkeitsdichte des Rayleigh–Fadings}} | ||
− | [[Datei:P_ID2107__Mob_Z_1_3.png|right|frame|Zwei Kanäle, | + | [[Datei:P_ID2107__Mob_Z_1_3.png|right|frame|Zwei Kanäle, gekennzeichnet durch komplexen Faktor $z(t)$]] |
− | Dargestellt ist der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben: | + | Dargestellt ist der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben: |
− | * Der Kanal | + | * Der Kanal $\rm R$ (die Bezeichnung ergibt sich aus der Farbe „Rot” der Punktwolke) ist rayleighverteilt mit $\sigma_{\rm R} = 0.5$. |
− | * Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen (mit $\sigma = \sigma_{\rm R}$ | + | * Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen $($mit $\sigma = \sigma_{\rm R})$: |
:$$f_a(a) = | :$$f_a(a) = | ||
\left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{ -{a^2}/(2\sigma^2)} \\ | \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{ -{a^2}/(2\sigma^2)} \\ | ||
Zeile 17: | Zeile 17: | ||
\\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array} | \\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array} | ||
.$$ | .$$ | ||
− | * Vom Kanal B („Blau”) ist nur die Punktwolke gegeben. Es ist abzuschätzen, ob hier ebenfalls <i>Rayleigh–Fading</i> vorliegt, und wenn JA, wie groß bei diesem Kanal die Kenngröße $\sigma = \sigma_{\rm B}$ ist. | + | * Vom Kanal $\rm B$ („Blau”) ist nur die Punktwolke gegeben. Es ist abzuschätzen, ob hier ebenfalls <i>Rayleigh–Fading</i> vorliegt, und wenn JA, wie groß bei diesem Kanal die Kenngröße $\sigma = \sigma_{\rm B}$ ist. |
− | * In der Teilaufgabe (3) wird schließlich auch auf die WDF $f_{\it \phi}(\phi)$ der Phasenfunktion $\phi(t)$ Bezug genommen. Diese ist wie folgt definiert: | + | * In der Teilaufgabe '''(3)''' wird schließlich auch auf die WDF $f_{\it \phi}(\phi)$ der Phasenfunktion $\phi(t)$ Bezug genommen. Diese ist wie folgt definiert: |
:$$\phi(t) = \arctan \hspace{0.15cm} \frac{y(t)}{x(t)} | :$$\phi(t) = \arctan \hspace{0.15cm} \frac{y(t)}{x(t)} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
+ | |||
+ | |||
+ | |||
+ | |||
''Hinweise:'' | ''Hinweise:'' | ||
− | * Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings|Wahrscheinlichkeitsdichte des Rayleigh–Fadings]] dieses Buches. | + | * Die Aufgabe gehört zum Kapitel [[Mobile_Kommunikation/Wahrscheinlichkeitsdichte_des_Rayleigh%E2%80%93Fadings|Wahrscheinlichkeitsdichte des Rayleigh–Fadings]] dieses Buches. |
− | * Eine ähnliche Thematik wird mit anderer Herangehensweise im Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]] des Buches „Stochastische Signaltheorie” behandelt. | + | * Eine ähnliche Thematik wird mit anderer Herangehensweise im Kapitel [[Stochastische_Signaltheorie/Weitere_Verteilungen|Weitere Verteilungen]] des Buches „Stochastische Signaltheorie” behandelt. |
− | * Zur Überprüfung Ihrer Ergebnisse können Sie das | + | * Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet [[Applets:WDF_VTF|WDF, VTF und Momente]] benutzen. |
Zeile 33: | Zeile 37: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Lässt sich auch der Kanal | + | {Lässt sich auch der Kanal $\rm B$ durch „<i>Rayleigh</i>” modellieren? |
|type="()"} | |type="()"} | ||
+ Ja. | + Ja. | ||
- Nein. | - Nein. | ||
− | {Schätzen Sie den Rayleigh–Parameter von Kanal | + | {Schätzen Sie den Rayleigh–Parameter von Kanal $\rm B$ ab. Zur Erinnerung: Bei Kanal $\rm R$ hat dieser Parameter den Wert $\sigma_{\rm R} = 0.5$. |
|type="{}"} | |type="{}"} | ||
$\sigma_{\rm B}\ = \ $ { 0.707 3% } | $\sigma_{\rm B}\ = \ $ { 0.707 3% } | ||
− | {Unterscheiden sich die Phasen–Wahrscheinlichkeitsdichtefunktionen $f_{\it \phi}(\phi)$ von Kanal | + | {Unterscheiden sich die Phasen–Wahrscheinlichkeitsdichtefunktionen $f_{\it \phi}(\phi)$ von Kanal $\rm R$ und $\rm B$ , und wenn JA, wie? |
|type="()"} | |type="()"} | ||
- Ja. | - Ja. | ||
+ Nein. | + Nein. | ||
− | {Welchen Verlauf hat in beiden Fällen die WDF $f_a(a)$ mit $a(t) = |z(t)|$? | + | {Welchen Verlauf hat in beiden Fällen die WDF $f_a(a)$ mit $a(t) = |z(t)|$? |
|type="()"} | |type="()"} | ||
− | - Der Betrag $a(t)$ ist gaußverteilt. | + | - Der Betrag $a(t)$ ist gaußverteilt. |
− | + Der Betrag $a(t)$ ist rayleighverteilt. | + | + Der Betrag $a(t)$ ist rayleighverteilt. |
− | - Der Betrag $a(t)$ ist positiv–exponentialverteilt. | + | - Der Betrag $a(t)$ ist positiv–exponentialverteilt. |
− | {Welchen Verlauf hat in beiden Fällen die WDF $f_p(p)$ mit $p(t) = |z(t)|^2$? | + | {Welchen Verlauf hat in beiden Fällen die WDF $f_p(p)$ mit $p(t) = |z(t)|^2$? |
|type="()"} | |type="()"} | ||
− | - Der Betrag $p(t)$ ist gaußverteilt. | + | - Der Betrag $p(t)$ ist gaußverteilt. |
− | - Der Betrag $p(t)$ ist rayleighverteilt. | + | - Der Betrag $p(t)$ ist rayleighverteilt. |
− | + Der Betrag $p(t)$ ist positiv–exponentialverteilt. | + | + Der Betrag $p(t)$ ist positiv–exponentialverteilt. |
− | {Wie groß ist die Wahrscheinlichkeit, dass der Betrag $a(t) = |z(t)|$ größer ist als ein vorgegebener Wert $A$? | + | {Wie groß ist die Wahrscheinlichkeit, dass der Betrag $a(t) = |z(t)|$ größer ist als ein vorgegebener Wert $A$? |
− | |type=" | + | |type="()"} |
− | - Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm ln}(A/\sigma).$ | + | - Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm ln}(A/\sigma).$ |
− | + Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm e}^{-A^2/2\sigma^2}.$ | + | + Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm e}^{-A^2/2\sigma^2}.$ |
− | - Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm e}^{-A/\sigma}.$ | + | - Es gilt ${\rm Pr}(|z(t)|) > A) = {\rm e}^{-A/\sigma}.$ |
− | {Berechnen Sie für beide Kanäle die Wahrscheinlichkeit ${\rm Pr}(|z(t)| > 1)$. | + | {Berechnen Sie für beide Kanäle die Wahrscheinlichkeit ${\rm Pr}(|z(t)| > 1)$. |
|type="{}"} | |type="{}"} | ||
− | Kanal | + | Kanal $\rm R$:$\hspace{0.4cm} {\rm Pr}(|z(t)| > 1)\ = \ $ { 0.135 3% } |
− | Kanal | + | Kanal $\rm B$:$\hspace{0.4cm} {\rm Pr}(|z(t)| > 1)\ = \ $ { 0.368 3% } |
</quiz> | </quiz> | ||
Version vom 28. März 2019, 16:37 Uhr
Dargestellt ist der multiplikative Faktor $z(t) = x(t) + {\rm j} \cdot y(t)$ zweier Mobilfunkkanäle (beide ohne Mehrwegeausbreitung) in 2D–Darstellung. Als gesichert wird vorgegeben:
- Der Kanal $\rm R$ (die Bezeichnung ergibt sich aus der Farbe „Rot” der Punktwolke) ist rayleighverteilt mit $\sigma_{\rm R} = 0.5$.
- Für die Wahrscheinlichkeitsdichtefunktion (WDF) von Betrag $a(t) = |z(t)|$ bzw. Betragsquadrat $p(t) = |z(t)|^2$ gelten somit die folgenden Gleichungen $($mit $\sigma = \sigma_{\rm R})$:
- $$f_a(a) = \left\{ \begin{array}{c} a/\sigma^2 \cdot {\rm e}^{ -{a^2}/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} a \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} a < 0 \\ \end{array} \hspace{0.05cm},$$
- $$f_p(p) = \left\{ \begin{array}{c} 1/(2\sigma^2) \cdot {\rm e}^{ -{p}/(2\sigma^2)} \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm f\ddot{u}r}\hspace{0.15cm} p \ge 0 \\ {\rm f\ddot{u}r}\hspace{0.15cm} p < 0 \\ \end{array} .$$
- Vom Kanal $\rm B$ („Blau”) ist nur die Punktwolke gegeben. Es ist abzuschätzen, ob hier ebenfalls Rayleigh–Fading vorliegt, und wenn JA, wie groß bei diesem Kanal die Kenngröße $\sigma = \sigma_{\rm B}$ ist.
- In der Teilaufgabe (3) wird schließlich auch auf die WDF $f_{\it \phi}(\phi)$ der Phasenfunktion $\phi(t)$ Bezug genommen. Diese ist wie folgt definiert:
- $$\phi(t) = \arctan \hspace{0.15cm} \frac{y(t)}{x(t)} \hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Wahrscheinlichkeitsdichte des Rayleigh–Fadings dieses Buches.
- Eine ähnliche Thematik wird mit anderer Herangehensweise im Kapitel Weitere Verteilungen des Buches „Stochastische Signaltheorie” behandelt.
- Zur Überprüfung Ihrer Ergebnisse können Sie das interaktive Applet WDF, VTF und Momente benutzen.
Fragebogen
Musterlösung
(2) Durch Vermessen der beiden eingezeichneten Kreise erkennt man, dass beim „blauen” Kanal die Streuungen von Real– und Imaginärteil um etwa den Faktor 1.4 (exakt: $\sqrt{2}$) größer sind als beim „roten” Kanal:
- $$\sigma_{\rm B} = \sigma_{\rm R} \cdot \sqrt{2} = 0.5 \cdot \sqrt{2}= {1}/{\sqrt{2}}\hspace{0.15cm} \underline{ \approx 0.707} \hspace{0.05cm}.$$
(3) Richtig ist NEIN. In beiden Fällen beschreibt $f_{\it \phi}(\phi)$ eine Gleichverteilung zwischen $–\pi$ und $+\pi$. Die größeren Amplituden von Kanal B spielen für die Phasenfunktion $\phi(t)$ keine Rolle.
(4) Richtig ist der Lösungsvorschlag 2. Bei Rayleigh–Fading sind Realteil $x(t)$ und Imaginärteil $y(t)$ jeweils gaußverteilt. Die Exponentialverteilung ergibt sich für das Betragsquadrat $p(t) = |z(t)|^2$.
(5) Richtig ist hier der Lösungsvorschlag 3, wie bereits in der Musterlösung zu (4) begründet wurde.
(6) Der Betrag $a(t)$ ist rayleighverteilt. Somit gilt für die gesuchte Wahrscheinlichkeit.
- $${\rm Pr}(a > A) = \int_{A}^{\infty}\frac{a}{\sigma^2} \cdot {\rm e}^{ -{a^2}/(2\sigma^2)} \hspace{0.15cm}{\rm d}a \hspace{0.05cm}.$$
In einigen Formelsammlungen findet man die Lösung für dieses Integral, aber nicht in allen. Es gilt aber auch mit der einseitig–exponentialverteilten Zufallsgröße $p = a^2$:
- $${\rm Pr}(a > A) = {\rm Pr}(p > A^2) = \frac{1}{2\sigma^2} \cdot\int_{A^2}^{\infty} {\rm e}^{ -{p}/(2\sigma^2)} \hspace{0.15cm}{\rm d}p \hspace{0.05cm}.$$
Dieses Integral ist elementar und liefert das Ergebnis:
- $${\rm Pr}(a > A) = {\rm e}^{ -{A^2}/(2\sigma^2)} \hspace{0.05cm}.$$
Richtig ist demnach der Lösungsvorschlag 2.
(7) Für den Kanal R gilt mit $\sigma = 0.5$:
- $${\rm Pr}(|z(t)| > 1) = {\rm e}^{-2} \hspace{0.15cm} \underline{ \approx 0.135} \hspace{0.05cm}.$$
In der oberen Grafik auf der Angabenseite entspricht das der Anzahl aller Punkte, die außerhalb des eingezeichneten Kreises liegen, bezogen auf die Anzahl $N = 10.000$ aller Punkte.
Für den Kanal (B) gilt wegen der doppelten Varianz $\sigma^2 = 0.5$ dagegen ${\rm Pr}(|z(t)|>1) = {\rm e}^{\rm –1} \ \underline {\approx \ 0.368}$. Hinweis: Der Bezugskreis hat auch hier den Radius 1. Der im unteren Bild eingezeichnete Kreis hat einen größeren Radius als $A = 1$, nämlich $A = \sqrt{2}\approx 1.414$.