Aufgaben:Aufgabe 1.5Z: Ausfallwahrscheinlichkeiten: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}} | {{quiz-Header|Buchseite=Stochastische Signaltheorie/Statistische Abhängigkeit und Unabhängigkeit}} | ||
− | [[Datei:P_ID87__Sto_Z_1_5.png|right|Funktionsschaltbild | + | [[Datei:P_ID87__Sto_Z_1_5.png|right|frame|Geräte–Funktionsschaltbild]] |
− | Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann | + | Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann. |
− | + | *Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen. | |
− | *Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen. | + | *Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind. |
Zeile 13: | Zeile 13: | ||
$$ G = T_1 \cup T_2.$$ | $$ G = T_1 \cup T_2.$$ | ||
− | Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist. | + | Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist. |
+ | |||
+ | |||
+ | |||
Zeile 19: | Zeile 22: | ||
*Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]]. | *Die Aufgabe gehört zum Kapitel [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]]. | ||
− | *Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das | + | *Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo |
− | :[[Statistische Abhängigkeit und Unabhängigkeit]] | + | :[[Statistische_Abhängigkeit_und_Unabhängigkeit_(Lernvideo)|Statistische Abhängigkeit und Unabhängigkeit]]. |
Zeile 26: | Zeile 29: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Die Ausfallwahrscheinlichkeit $p_{\rm G}$ des Gesamtgeräts darf nicht größer sein als 0.04%. Wie groß dürfen dann die Ausfallwahrscheinlichkeiten $p_{\rm T}$ der zwei parallel vorhandenen identischen Geräteteile höchstens sein? | + | {Die Ausfallwahrscheinlichkeit $p_{\rm G}$ des Gesamtgeräts darf nicht größer sein als $0.04\%$. <br>Wie groß dürfen dann die Ausfallwahrscheinlichkeiten $p_{\rm T}$ der zwei parallel vorhandenen identischen Geräteteile höchstens sein? |
|type="{}"} | |type="{}"} | ||
− | $p_\text{T, max} \ = $ { 2 3% } $ \ \%$ | + | $p_\text{T, max} \ = \ $ { 2 3% } $ \ \%$ |
− | {Die Ausfallwahrscheinlichkeit aller Bauteile sei $p_{\rm A} = 0.1$. Jedes Teilgerät bestehe aus $n = 3$ Bauteilen. Berechnen Sie die Wahrscheinlichkeit $p_{\rm T}$ exakt, dass ein Teilgerät ausfällt. | + | {Die Ausfallwahrscheinlichkeit aller Bauteile sei $p_{\rm A} = 0.1$. Jedes Teilgerät bestehe aus $n = 3$ Bauteilen. <br>Berechnen Sie die Wahrscheinlichkeit $p_{\rm T}$ exakt, dass ein Teilgerät ausfällt. |
|type="{}"} | |type="{}"} | ||
− | $\text{exakt: | + | $\text{exakt:}\ \ \ p_{\rm T} \ = \ $ { 27.1 3% } $ \ \%$ |
{Welcher Wert ergibt sich für $p_{\rm A} = 0.01$? In welcher Form kann man $p_{\rm T}$ für kleine Werte von $p_{\rm A}$ annähern? | {Welcher Wert ergibt sich für $p_{\rm A} = 0.01$? In welcher Form kann man $p_{\rm T}$ für kleine Werte von $p_{\rm A}$ annähern? | ||
|type="{}"} | |type="{}"} | ||
− | $\text{Näherung: | + | $\text{Näherung:}\ \ \ p_{\rm T} \ = \ $ { 2.97 3% } $ \ \%$ |
{Nun gelte für die Ausfallwahrscheinlichkeit aller Bauteile $p_{\rm A} = 0.4\%$. Wieviele Bauteile kann das Teilgerät höchstens enthalten, wenn $p_{\rm T} ≤ 2\%$ gelten soll? | {Nun gelte für die Ausfallwahrscheinlichkeit aller Bauteile $p_{\rm A} = 0.4\%$. Wieviele Bauteile kann das Teilgerät höchstens enthalten, wenn $p_{\rm T} ≤ 2\%$ gelten soll? | ||
|type="{}"} | |type="{}"} | ||
− | $n \ = $ { 5 3% } | + | $n \ = \ $ { 5 3% } |
Version vom 1. August 2018, 14:37 Uhr
Ein Geräteteil ist aus den Bauteilen $B_1, B_2, … , B_n$ aufgebaut, wobei die jeweilige Funktionsfähigkeit unabhängig von allen anderen Bauteilen angenommen werden kann.
- Gehen Sie davon aus, dass alle Bauteile mit gleicher Wahrscheinlichkeit $p_{\rm A}$ ausfallen.
- Das Teil $T_1$ funktioniert nur dann, wenn alle $n$ Bauteile funktionsfähig sind.
Zur Erhöhung der Zuverlässigkeit werden wichtige Baugruppen häufig dupliziert. Das Gerät $G$ kann somit mengentheoretisch wie folgt beschrieben werden:
$$ G = T_1 \cup T_2.$$
Das heißt: Das Gerät $G$ ist bereits dann einsatzbereit, wenn zumindest eines der beiden baugleichen Teilgeräte ($T_1$ oder $T_2$) funktionsfähig ist.
Hinweise:
- Die Aufgabe gehört zum Kapitel Statistische Abhängigkeit und Unabhängigkeit.
- Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo
Fragebogen
Musterlösung
- $$\rm Pr(\it G \rm \hspace{0.1cm}f\ddot{a}llt\hspace{0.1cm}aus) = Pr(\it T_{\rm 1}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus) \cdot Pr(\it T_{\rm 2}\rm \hspace{0.1cm} f\ddot{a}llt \hspace{0.1cm}aus). $$
- Da die Teilgeräte $T_1$ und $T_2$ baugleich sind, fallen sie mit der gleichen Wahrscheinlichkeit $p_{\rm T}$ aus. Daraus folgt:
- $$p_{\rm G} = \it p_{\rm T}^{\rm 2} \hspace{0.5cm} \rm bzw. \hspace{0.5cm} \rm \it p_{\rm T,\hspace{0.1cm}max}= \sqrt{\it p_{\rm G}} \le \rm\sqrt{0.0004} \hspace{0.15cm}\underline {= 2\%}.$$
(2) Dieses Ergebnis ist einfacher über das Komplementärereignis zu bestimmen:
- $$\rm Pr(\it T_{\rm 1}\hspace{0.1cm}\rm funktioniert) = \rm Pr(\it B_{\rm 1} \hspace{0.1cm}\rm funktioniert \cap \it B_{\rm 2} \hspace{0.1cm} \rm funktioniert \cap \it B_{\rm 3}\hspace{0.1cm} \rm funktioniert).$$
- $$\Rightarrow 1- p_{\rm T}= (1-p_{\rm A})^{3} \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} 1-p_{\rm T}=(0.9)^3= 0.729 \hspace{0.3cm}\rm \Rightarrow \hspace{0.3cm} p_{\rm T}\hspace{0.15cm}\underline {= 0.271 = 27.1\%}.$$
(3) Mit $p_{\rm A} = 0.01$ erhält man $p_{\rm T}\hspace{0.15cm}\underline {= 2.97\%}.$ Allgemein gilt die Näherung: $p_{\rm T} \approx n \cdot p_{\rm A}\; (= 3\%)$.
(4) Mit der Näherung der letzten Teilaufgabe folgt direkt $\underline{n = 5}$. Bei größerem $p_{\rm A}$ müsste man wie folgt vorgehen: $$0.996^{\it n}\ge 0.98 \hspace{0.5cm} \rm\Rightarrow \hspace{0.5cm} \it n\le\rm\frac{log(0.98)}{log(0.996)} = 5.0406\hspace{0.15cm}\underline { \approx 5}.$$