Aufgaben:Aufgabe 2.1Z: Summensignal: Unterschied zwischen den Versionen
K (Textersetzung - „*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.“ durch „ “) |
|||
Zeile 3: | Zeile 3: | ||
}} | }} | ||
− | [[Datei:P_ID319__Sig_Z_2_1.png|right|frame|Summensignal ]] | + | [[Datei:P_ID319__Sig_Z_2_1.png|right|frame|Rechtecksignal, Dreiecksignal und Summensignal]] |
In der nebenstehenden Grafik sind die beiden periodischen Signale ${x(t)}$ und ${y(t)}$ dargestellt, aus denen das Summensignal ${s(t)}$ – im unteren Bild skizziert – sowie das Differenzsignal ${d(t)}$ gebildet werden. | In der nebenstehenden Grafik sind die beiden periodischen Signale ${x(t)}$ und ${y(t)}$ dargestellt, aus denen das Summensignal ${s(t)}$ – im unteren Bild skizziert – sowie das Differenzsignal ${d(t)}$ gebildet werden. | ||
Zeile 17: | Zeile 17: | ||
− | '' | + | ''Hinweis:'' |
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Allgemeine_Beschreibung|Allgemeine Beschreibung periodischer Signale]]. | *Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Allgemeine_Beschreibung|Allgemeine Beschreibung periodischer Signale]]. | ||
Zeile 60: | Zeile 60: | ||
'''(3)''' Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht. | '''(3)''' Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht. | ||
− | [[Datei:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Differenzsignal]] | + | [[Datei:P_ID320__Sig_Z_2_1_d_neu.png|right|frame|Differenzsignal $d(t) = x(t) - y(t)$]] |
Version vom 12. Juli 2018, 13:05 Uhr
In der nebenstehenden Grafik sind die beiden periodischen Signale ${x(t)}$ und ${y(t)}$ dargestellt, aus denen das Summensignal ${s(t)}$ – im unteren Bild skizziert – sowie das Differenzsignal ${d(t)}$ gebildet werden.
Weiterhin betrachten wir in dieser Aufgabe das Signal ${w(t)}$, das sich aus der Summe der beiden periodischen Signalen ${u(t)}$ und $v(t)$ ergibt. Die Grundfrequenzen der Signale seien
- $f_u = 998 \,\text{Hz},$
- $f_v = 1002 \,\text{Hz}.$
Mehr ist von diesen Signalen ${u(t)}$ und $v(t)$ nicht bekannt.
Hinweis:
- Die Aufgabe gehört zum Kapitel Allgemeine Beschreibung periodischer Signale.
Fragebogen
Musterlösung
(2) Für das Dreiecksignal gilt $T_y = 2.5 \,\text{ms}$ und $f_y \hspace{0.15cm}\underline{= 0.4\, \text{kHz}}$.
(3) Die Grundfrequenz $f_s$ des Summensignals $s(t)$ ist der größte gemeinsame Teiler von $f_x = 1 \,\text{kHz}$ und $f_y = 0.4 \,\text{kHz}$. Daraus folgt $f_s = 200 \,\text{Hz}$ und die Periodendauer $T_s\hspace{0.15cm}\underline{ = 5 \,\text{ms}}$, wie auch aus der grafischen Darstellung des Signals ${s(t)}$ auf der Angabenseite hervorgeht.
(4) Die Periodendauer $T_d$ ändert sich gegenüber der Periodendauer $T_s$ nicht, wenn das Signal ${y(t)}$ nicht addiert, sondern subtrahiert wird: $T_d = T_s \hspace{0.15cm}\underline{= 5\, \text{ms}}$.
(5) Der größte gemeinsame Teiler von $f_u = 998 \,\text{Hz}$ und $f_{v} = 1002 \,\text{Hz}$ ist $f_w = 2 \,\text{Hz}$. Der Kehrwert hiervon ergibt die Periodendauer $T_w \hspace{0.15cm}\underline{= 500 \,\text{ms}}$.