Aufgaben:Aufgabe 2.3: cos- und sin-Anteil: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 5: Zeile 5:
 
[[Datei: P_ID278_Sig_A_2_3neu.png|right|frame|Spektrum von Cosinus- und Sinusanteilen]]
 
[[Datei: P_ID278_Sig_A_2_3neu.png|right|frame|Spektrum von Cosinus- und Sinusanteilen]]
  
Gegeben ist das Amplitudenspektrum $X(f)$ eines Signals $x(t)$ entsprechend der Grafik.
+
Gegeben ist das Amplitudenspektrum  $X(f)$  eines Signals  $x(t)$  entsprechend der Grafik.
*Die Normierungsfrequenz sei $f_1 = 4\,\text{kHz}$.  
+
*Die Normierungsfrequenz sei  $f_1 = 4\,\text{kHz}$.  
*Damit liegen die tatsächlichen Frequenzen der Signalanteile bei $0\,\text{kHz}$, $4\,\text{kHz}$ und $10\,\text{kHz}$ .
+
*Damit liegen die tatsächlichen Frequenzen der Signalanteile bei  $0\,\text{kHz}$,  $4\,\text{kHz}$  und  $10\,\text{kHz}$.
  
  
Dieses Signal $x(t)$ liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit $\omega_1 = 2\pi f_1$ wie folgt dargestellt werden kann:
+
Dieses Signal  $x(t)$  liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit  $\omega_1 = 2\pi f_1$  wie folgt dargestellt werden kann:
  
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}  x(t)}{{\rm d}  t}.$$
 
:$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}  x(t)}{{\rm d}  t}.$$
 +
 +
 +
  
  
Zeile 18: Zeile 21:
  
 
''Hinweis:''  
 
''Hinweis:''  
*Die Aufgabe gehört zum Kapitel [[Signaldarstellung/Harmonische_Schwingung|Harmonische Schwingung]].
+
*Die Aufgabe gehört zum Kapitel  [[Signaldarstellung/Harmonische_Schwingung|Harmonische Schwingung]].
 
   
 
   
  
Zeile 30: Zeile 33:
 
<quiz display=simple>
 
<quiz display=simple>
  
{Geben Sie $x(t)$ analytisch an. Wie groß ist der Signalwert bei $t = 0$?
+
{Geben Sie&nbsp; $x(t)$&nbsp; analytisch an.&nbsp; Wie groß ist der Signalwert bei&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$x(t=0)\ = \ $ { 1 3% } &nbsp; ${\rm V}$
 
$x(t=0)\ = \ $ { 1 3% } &nbsp; ${\rm V}$
  
{Wie groß ist die Periodendauer des Signals $x(t)$?
+
{Wie groß ist die Periodendauer des Signals&nbsp; $x(t)$?
 
|type="{}"}
 
|type="{}"}
 
$T_0\ = \ $ { 0.5 3% } &nbsp; ${\rm ms}$
 
$T_0\ = \ $ { 0.5 3% } &nbsp; ${\rm ms}$
  
{Berechnen Sie das Ausgangssignal $y(t)$ des Differenzierers. Wie groß ist der Signalwert zum Zeitpunkt $t = 0$?
+
{Berechnen Sie das Ausgangssignal&nbsp; $y(t)$&nbsp; des Differenzierers.&nbsp; Wie groß ist der Signalwert zum Zeitpunkt&nbsp; $t = 0$?
 
|type="{}"}
 
|type="{}"}
 
$y(t=0)\ = \ $ { 10 3% } &nbsp; ${\rm V}$
 
$y(t=0)\ = \ $ { 10 3% } &nbsp; ${\rm V}$
  
{Welche der folgenden Aussagen sind bezüglich des Signals $y(t)$ bzw. seines Spektrums $Y(f)$ zutreffend?
+
{Welche der folgenden Aussagen sind bezüglich des Signals&nbsp; $y(t)$&nbsp; bzw. seines Spektrums&nbsp; $Y(f)$&nbsp; zutreffend?
 
|type="[]"}
 
|type="[]"}
+ $y(t)$ hat die gleiche Periodendauer wie das Signal $x(t)$.
+
+ $y(t)$&nbsp; hat die gleiche Periodendauer wie das Signal&nbsp; $x(t)$.
- $Y(f)$ beinhaltet eine Diracfunktion bei der Frequenz $f = 0$.
+
- $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei der Frequenz&nbsp; $f = 0$.
- $Y(f)$ beinhaltet eine Diracfunktion bei $+f_1$ mit dem Gewicht $\rm{j} · 1\,{\rm V}$.
+
- $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei&nbsp; $+f_1$&nbsp; mit dem Gewicht&nbsp; $\rm{j} · 1\,{\rm V}$.
+ $Y(f)$ beinhaltet eine Diracfunktion bei $–\hspace{-0.1cm}2.5 \cdot f_1$ mit dem Gewicht $5\,{\rm V}$.
+
+ $Y(f)$&nbsp; beinhaltet eine Diracfunktion bei&nbsp; $–\hspace{-0.1cm}2.5 \cdot f_1$&nbsp; mit dem Gewicht&nbsp; $5\,{\rm V}$.
  
  

Version vom 2. September 2019, 16:56 Uhr

Spektrum von Cosinus- und Sinusanteilen

Gegeben ist das Amplitudenspektrum  $X(f)$  eines Signals  $x(t)$  entsprechend der Grafik.

  • Die Normierungsfrequenz sei  $f_1 = 4\,\text{kHz}$.
  • Damit liegen die tatsächlichen Frequenzen der Signalanteile bei  $0\,\text{kHz}$,  $4\,\text{kHz}$  und  $10\,\text{kHz}$.


Dieses Signal  $x(t)$  liegt am Eingang eines linearen Differenzierers, dessen Ausgang mit  $\omega_1 = 2\pi f_1$  wie folgt dargestellt werden kann:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d} x(t)}{{\rm d} t}.$$




Hinweis:




Fragebogen

1

Geben Sie  $x(t)$  analytisch an.  Wie groß ist der Signalwert bei  $t = 0$?

$x(t=0)\ = \ $

  ${\rm V}$

2

Wie groß ist die Periodendauer des Signals  $x(t)$?

$T_0\ = \ $

  ${\rm ms}$

3

Berechnen Sie das Ausgangssignal  $y(t)$  des Differenzierers.  Wie groß ist der Signalwert zum Zeitpunkt  $t = 0$?

$y(t=0)\ = \ $

  ${\rm V}$

4

Welche der folgenden Aussagen sind bezüglich des Signals  $y(t)$  bzw. seines Spektrums  $Y(f)$  zutreffend?

$y(t)$  hat die gleiche Periodendauer wie das Signal  $x(t)$.
$Y(f)$  beinhaltet eine Diracfunktion bei der Frequenz  $f = 0$.
$Y(f)$  beinhaltet eine Diracfunktion bei  $+f_1$  mit dem Gewicht  $\rm{j} · 1\,{\rm V}$.
$Y(f)$  beinhaltet eine Diracfunktion bei  $–\hspace{-0.1cm}2.5 \cdot f_1$  mit dem Gewicht  $5\,{\rm V}$.


Musterlösung

Summensignal aus Cosinus- und Sinusanteilen

(1)  Das Zeitsignal hat die folgende Form:

$$x(t)={\rm 3V}-{\rm 2V}\cdot \cos(\omega_{\rm 1} \cdot t)+{\rm 4V} \cdot \sin(2.5 \cdot \omega_{\rm 1} \cdot t).$$

Hierbei bezeichnet $\omega_1 = 2\pi f_1$ die Kreisfrequenz des Cosinusanteils. Zum Zeitpunkt $t = 0$ hat das Signal den Wert $x(t=0)\hspace{0.15 cm}\underline{=1\,\rm V}$.


(2)  Die Grundfrequenz $f_0$ ist der kleinste gemeinsame Teiler

  • von $f_1 = 4{\,\rm kHz}$
  • und $2.5 · f_1 = 10{\,\rm kHz}$.


Daraus folgt $f_0 = 2{\,\rm kHz}$   ⇒   Periodendauer $T_0 = 1/f_0 \hspace{0.1cm}\underline{= 0.5 {\,\rm ms}}$.

Spektrum mit diskreten Anteilen

(3)  Für das Ausgangssignal $y(t)$ des Differenzierers gilt:

$$y(t)=\frac{1}{\omega_1}\cdot\frac{ {\rm d}x(t)}{{\rm d}t}=\frac{ {\rm -2V}}{\omega_1}\cdot\omega_1 \cdot (-\sin(\omega_1 t))+\frac{\rm 4V}{\omega_1}\cdot 2.5\omega_1\cdot {\rm cos}(2.5\omega_1t).$$

Dies führt zum Ergebnis:

$$y(t)={\rm 2V}\cdot\sin(\omega_1 t)+{\rm 10V}\cdot\cos(2.5\omega_1 t).$$

Für $t = 0$ ergibt sich der Wert $y(t=0)\hspace{0.15cm}\underline{=10\,\rm V}$. Rechts ist das Spektrum $Y(f)$ dargestellt.


(4)  Richtig sind die Lösungsvorschläge 1 und 4:

  • Die Periodendauer $T_0$ wird durch die Amplitude und die Phase der beiden Anteile nicht verändert.
  • Das bedeutet, dass weiterhin $T_0 = 0.5 {\,\rm ms}$ gilt.
  • Der Gleichanteil verschwindet aufgrund der Differentiation.
  • Der Anteil bei $f_1$ ist sinusförmig. Somit hat $X(f)$ einen (imaginären) Dirac bei $f = f_1$, jedoch mit negativem Vorzeichen.
  • Der Cosinusanteil mit der Amplitude ${10\,\rm V}$ hat die beiden Diracfunktionen bei $\pm 2.5 \cdot f_1$ zur Folge, jeweils mit dem Gewicht ${5\,\rm V}$ .