Aufgaben:Aufgabe 4.2: Wieder Dreieckgebiet: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 64: Zeile 64:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig ist <u>der mittlere Vorschlag</u>:  
+
'''(1)'''&nbsp; Richtig ist der <u>mittlere Vorschlag</u>:  
 
*Sowohl $y_1(x)$ als auch $y_2(x)$  schneiden die $y$-Achse bei $y= 1$.  
 
*Sowohl $y_1(x)$ als auch $y_2(x)$  schneiden die $y$-Achse bei $y= 1$.  
 
*Die untere Begrenzungslinie hat die Steigung $0.5$, die obere die Steigung $1$.
 
*Die untere Begrenzungslinie hat die Steigung $0.5$, die obere die Steigung $1$.
 +
  
  
 
'''(2)'''&nbsp; Entsprechend den Hinweisen erhalten wir:
 
'''(2)'''&nbsp; Entsprechend den Hinweisen erhalten wir:
:$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot  y \, \,{\rm d}y\,\, \, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} ]  \,\, {\rm d}x.$$
+
:$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot  y \, \,{\rm d}y\,\, \, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big]  \,\, {\rm d}x.$$
  
 
Dies f&uuml;hrt zum Integral bzw. Endergebnis:
 
Dies f&uuml;hrt zum Integral bzw. Endergebnis:
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\rm\frac{3}{4}\it x^{\rm 3}{\rm +}\it x^{\rm 2}\rm )\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
+
:$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$
 +
 
  
 
'''(3)'''&nbsp; Da beide Zufallsgr&ouml;&szlig;en jeweils einen Mittelwert ungleich $0$ besitzen, folgt f&uuml;r die Kovarianz:
 
'''(3)'''&nbsp; Da beide Zufallsgr&ouml;&szlig;en jeweils einen Mittelwert ungleich $0$ besitzen, folgt f&uuml;r die Kovarianz:
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
 
:$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$
 +
  
 
'''(4)'''&nbsp; Mit den angegebenen Streuungen erh&auml;lt man:
 
'''(4)'''&nbsp; Mit den angegebenen Streuungen erh&auml;lt man:
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
 
:$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
[[Datei:P_ID223__Sto_A_4_2_d.png|right|Korrelationsgerade]]
+
[[Datei:P_ID223__Sto_A_4_2_d.png|right|frame|Korrelationsgerade]]
 +
 
  
 
'''(5)'''&nbsp; F&uuml;r die Korrelationsgerade (KG) gilt allgemein:
 
'''(5)'''&nbsp; F&uuml;r die Korrelationsgerade (KG) gilt allgemein:
Zeile 86: Zeile 90:
  
 
Mit den oben berechneten Zahlenwerten erh&auml;lt man
 
Mit den oben berechneten Zahlenwerten erh&auml;lt man
$$y={\rm 3}/{\rm 4}\cdot  x +\rm 1.$$
+
:$$y={\rm 3}/{\rm 4}\cdot  x +\rm 1.$$
  
 
Die Korrelationsgerade schneidet die $y$-Achse bei $\underline{y=1}$ und geht auch durch den Punkt $(4, 4)$. Jedes andere Ergebnis w&auml;re auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet:  
 
Die Korrelationsgerade schneidet die $y$-Achse bei $\underline{y=1}$ und geht auch durch den Punkt $(4, 4)$. Jedes andere Ergebnis w&auml;re auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet:  
 
*Setzt man $m_x = 8/3$ ein, so erh&auml;lt man $y = m_y = 3$.  
 
*Setzt man $m_x = 8/3$ ein, so erh&auml;lt man $y = m_y = 3$.  
*Das heißt: Die berechnete Korrelationsgerade geht tats&auml;chlich durch den Punkt $(m_x, m_y)$, wie es die Theorie besagt.
+
*Das heißt: &nbsp; Die berechnete Korrelationsgerade geht tats&auml;chlich durch den Punkt $(m_x, m_y)$, wie es die Theorie besagt.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 15. August 2018, 13:58 Uhr

Dreieckiges 2D-Gebiet und die beiden Randwahrscheinlichkeitsdichten

Wir betrachten die gleiche Zufallsgröße ($x$, $y$) wie in der Aufgabe 4.1:

  • In einem durch die Eckpunkte $(0,\ 1)$, $(4,\ 3)$ und $(4,\ 5)$ definierten Gebiet $D$ sei die 2D–WDF $f_{xy} (x, y) = 0.25$.
  • Außerhalb dieses in der Grafik rot markierten Definitionsgebietes $D$ gibt es keine Werte.


Weiterhin sind in der Grafik die beiden Randwahrscheinlichkeitsdichten bezüglich den Größen $x$ und $y$ eingezeichnet, die bereits in der Aufgabe 4.1 ermittelt wurden.

Daraus lassen sich mit den Gleichungen des Kapitels Erwartungswerte und Momente die Kenngrößen der beiden Zufallsgrößen bestimmen:

$$m_x=8/3 ,\hspace{0.5cm} \sigma_x=\sqrt{8/9},$$
$$ m_y= 3,\hspace{0.95cm} \sigma_y = \sqrt{\rm 2/3}.$$

Aufgrund der Tatsache, dass das Definitionsgebiet $D$ durch zwei Gerade $y_1(x)$ und $y_2(x)$ begrenzt ist, kann hier das gemeinsame Moment erster Ordnung wie folgt berechnet werden.

$$m_{xy}={\rm E}\big[x\cdot y\big]=\int_{x_{1}}^{x_{2}}x\cdot \int_{y_{1}(x)}^{y_{2}(x)}y \cdot f_{xy}(x,y) \, \,{\rm d}y\, {\rm d}x.$$



Hinweise:



Fragebogen

1

Wie lauten die Grenzgeraden des inneren Integrals zur $m_{xy}$–Berechnung?

$y_1(x) = x+1, $     $y_2(x) = 2x+1.$
$y_1(x) = x/2+1, $     $y_2(x) = x+1.$
$y_1(x) = x-1, $     $y_2(x) = 2x+1.$

2

Berechnen Sie das gemeinsame Moment $m_{xy}$ gemäß dem Doppelintegral auf der Angabenseite.
Hinweis:  Setzen Sie $x_1 = 0$ und $x_2 = 4$ .

$m_{xy} \ = \ $

3

Welcher Wert ergibt sich für die Kovarianz $\mu_{xy}$ ?

$\mu_{xy}\ = \ $

4

Wie groß ist der Korrelationskoeffizient $\rho_{xy}$?

$\rho_{xy}\ = \ $

5

Wie lautet die Gleichung der Korrelationsgeraden $y = K(x)$? An welcher Stelle $y_0$ schneidet die Gerade die $y$-Achse?
Zeigen Sie, dass die Korrelationsgerade auch durch den Punkt $(m_x, m_y)$ geht.

$y_0\ = \ $


Musterlösung

(1)  Richtig ist der mittlere Vorschlag:

  • Sowohl $y_1(x)$ als auch $y_2(x)$ schneiden die $y$-Achse bei $y= 1$.
  • Die untere Begrenzungslinie hat die Steigung $0.5$, die obere die Steigung $1$.


(2)  Entsprechend den Hinweisen erhalten wir:

$$m_{xy}=\int_{\rm 0}^{\rm 4} x \cdot \int_{\it x/\rm 2 +\rm 1}^{\it x+\rm 1} {1}/{4}\cdot y \, \,{\rm d}y\,\, \, {\rm d}x = {1}/{8}\cdot \int_{\rm 0}^{\rm 4} x\cdot \big[( x+ 1)^{\rm 2}- ({ x}/{2}+1)^{\rm 2} \big] \,\, {\rm d}x.$$

Dies führt zum Integral bzw. Endergebnis:

$$m_{xy}={1}/{8}\int_{\rm 0}^{\rm 4}(\frac{3}{4}\cdot x^{3}{\rm +} x^2\,{\rm d}x = \rm \frac{1}{8} \cdot (\frac{3}{16}\cdot 4^4+\rm \frac{4^3}{3})=\frac{26}{3}\hspace{0.15cm}\underline{ \approx 8.667}.$$


(3)  Da beide Zufallsgrößen jeweils einen Mittelwert ungleich $0$ besitzen, folgt für die Kovarianz:

$$\it \mu_{xy}=\it m_{xy}-m_{x}\cdot m_{y}=\frac{\rm 26}{\rm 3}-\frac{\rm 8}{\rm 3}\cdot\rm 3={2}/{3} \hspace{0.15cm}\underline{=0.667}.$$


(4)  Mit den angegebenen Streuungen erhält man:

$$\rho_{xy}=\frac{\mu_{xy}}{\sigma_{x}\cdot\sigma_{y}}=\frac{{\rm 2}/{\rm 3}}{\sqrt{{\rm 8}/{\rm 9}}\cdot\sqrt{{\rm 2}/{\rm 3}}}=\sqrt{0.75}\hspace{0.15cm}\underline{=\rm 0.866}.$$
Korrelationsgerade


(5)  Für die Korrelationsgerade (KG) gilt allgemein:

$$ y-m_{y}=\rho_{xy}\cdot\frac{\sigma_{y}}{\sigma_ {x}}\cdot(x-m_{x}).$$

Mit den oben berechneten Zahlenwerten erhält man

$$y={\rm 3}/{\rm 4}\cdot x +\rm 1.$$

Die Korrelationsgerade schneidet die $y$-Achse bei $\underline{y=1}$ und geht auch durch den Punkt $(4, 4)$. Jedes andere Ergebnis wäre auch nicht zu interpretieren, wenn man das Definitionsgebiet betrachtet:

  • Setzt man $m_x = 8/3$ ein, so erhält man $y = m_y = 3$.
  • Das heißt:   Die berechnete Korrelationsgerade geht tatsächlich durch den Punkt $(m_x, m_y)$, wie es die Theorie besagt.