Aufgaben:Aufgabe 4.8: Nebensprechstörungen: Unterschied zwischen den Versionen
Zeile 4: | Zeile 4: | ||
[[Datei: P_ID1817__LZI_A_4_8_neu.png|right|frame|Zum Nah– und Fernnebensprechen]] | [[Datei: P_ID1817__LZI_A_4_8_neu.png|right|frame|Zum Nah– und Fernnebensprechen]] | ||
− | Auf dem $S_0$–Bus bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|ISDN]] (''Integrated Services Digital Networks'') werden die Daten getrennt nach Übertragungsrichtung auf einem Sternvierer übertragen. Das Empfangssignal eines ISDN–Geräts wird daher außer von Verbindungen auf anderen Adern auch durch Nebensprechen von seinem eigenen Sendesignal gestört. | + | Auf dem $S_0$–Bus bei [[Beispiele_von_Nachrichtensystemen/Allgemeine_Beschreibung_von_ISDN|$\rm ISDN$]] (''Integrated Services Digital Networks'') werden die Daten getrennt nach Übertragungsrichtung auf einem Sternvierer übertragen. Das Empfangssignal eines ISDN–Geräts wird daher außer von Verbindungen auf anderen Adern auch durch Nebensprechen von seinem eigenen Sendesignal gestört. |
In dieser Aufgabe werden zwei ISDN–Terminals im Abstand von $\text{50 m}$ betrachtet, wobei vorausgesetzt wird: | In dieser Aufgabe werden zwei ISDN–Terminals im Abstand von $\text{50 m}$ betrachtet, wobei vorausgesetzt wird: | ||
− | * Für das Leistungsdichtespektrum (LDS) des Senders eines jeden Terminals gelte mit ${\it\Phi}_{0} = 5 \cdot 10^{-9} \ \rm W/Hz$ sehr stark vereinfacht: | + | * Für das Leistungsdichtespektrum (LDS) des Senders eines jeden Terminals gelte mit ${\it\Phi}_{0} = 5 \cdot 10^{-9} \ \rm W/Hz$ sehr stark vereinfacht: |
:$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\ | :$${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\ | ||
0 \end{array} \right. | 0 \end{array} \right. | ||
\begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} | \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} | ||
\end{array}\begin{array}{*{20}c} | \end{array}\begin{array}{*{20}c} | ||
− | { |f| \le f_0 = 100\ | + | { |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},} \\ |
{ |f| > f_0\hspace{0.05cm}.} | { |f| > f_0\hspace{0.05cm}.} | ||
\end{array}$$ | \end{array}$$ | ||
− | * Die Leistungsübertragungsfunktion auf dem $S_0$–Bus $\text{(0.6 mm}$ Kupfer–Zweidrahtleitung, $\text{50 m)}$ soll im betrachteten Bereich $0 < |f| < 100 \ \rm kHz$ wie folgt (stark vereinfacht) angenähert werden: | + | * Die Leistungsübertragungsfunktion auf dem $S_0$–Bus $\text{(0.6 mm}$ Kupfer–Zweidrahtleitung, $\text{50 m)}$ soll im betrachteten Bereich $0 < |f| < 100 \ \rm kHz$ wie folgt (stark vereinfacht) angenähert werden: |
:$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$ | :$$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$ | ||
− | * Die Nahnebensprech–Leistungsübertragungsfunktion ist wie folgt gegeben ( | + | * Die Nahnebensprech–Leistungsübertragungsfunktion ist wie folgt gegeben $(\rm NEXT$ steht dabei für ''Near–End–Crosstalk''$)$: |
:$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm | :$$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm | ||
NEXT} = 6 \cdot 10^{-10}\,{\rm s} | NEXT} = 6 \cdot 10^{-10}\,{\rm s} | ||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
− | Die Grafik zeigt die betrachtete Systemkonfiguration. Mit zwei Doppeladern sind die Teilnehmer $1$ und $2$ verbunden (je eine in beide Richtungen), während auf zwei anderen Doppeladern (nicht im gleichen Sternvierer) eine Verbindung zwischen Teilnehmer $3$ und Teilnehmer $4$ besteht. | + | Die Grafik zeigt die betrachtete Systemkonfiguration. Mit zwei Doppeladern sind die Teilnehmer $1$ und $2$ verbunden (je eine in beide Richtungen), während auf zwei anderen Doppeladern (nicht im gleichen Sternvierer) eine Verbindung zwischen Teilnehmer $3$ und Teilnehmer $4$ besteht. |
+ | |||
+ | |||
Zeile 59: | Zeile 61: | ||
− | {Geben Sie die Leistung der Nebensprechstörung an. Es gilt $ 1 \ \rm nW = 10^{-9} \ \rm W$. | + | {Geben Sie die Leistung der Nebensprechstörung an. Es gilt $ 1 \ \rm nW = 10^{-9} \ \rm W$. |
|type="{}"} | |type="{}"} | ||
$P_\text{NEXT} \ = \ $ { 0.186 3% } $\ \rm nW$ | $P_\text{NEXT} \ = \ $ { 0.186 3% } $\ \rm nW$ |
Version vom 8. November 2019, 11:02 Uhr
Auf dem $S_0$–Bus bei $\rm ISDN$ (Integrated Services Digital Networks) werden die Daten getrennt nach Übertragungsrichtung auf einem Sternvierer übertragen. Das Empfangssignal eines ISDN–Geräts wird daher außer von Verbindungen auf anderen Adern auch durch Nebensprechen von seinem eigenen Sendesignal gestört.
In dieser Aufgabe werden zwei ISDN–Terminals im Abstand von $\text{50 m}$ betrachtet, wobei vorausgesetzt wird:
- Für das Leistungsdichtespektrum (LDS) des Senders eines jeden Terminals gelte mit ${\it\Phi}_{0} = 5 \cdot 10^{-9} \ \rm W/Hz$ sehr stark vereinfacht:
- $${\it\Phi}_{s}(f)= \left\{ \begin{array}{c} {\it\Phi}_{0} \\ 0 \end{array} \right. \begin{array}{c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \end{array}\begin{array}{*{20}c} { |f| \le f_0 = 100\:{\rm kHz} \hspace{0.05cm},} \\ { |f| > f_0\hspace{0.05cm}.} \end{array}$$
- Die Leistungsübertragungsfunktion auf dem $S_0$–Bus $\text{(0.6 mm}$ Kupfer–Zweidrahtleitung, $\text{50 m)}$ soll im betrachteten Bereich $0 < |f| < 100 \ \rm kHz$ wie folgt (stark vereinfacht) angenähert werden:
- $$|H_{\rm K}(f)|^2 = 0.9 - 0.04 \cdot \frac{|f|}{\rm 1 \ MHz}\hspace{0.05cm}.$$
- Die Nahnebensprech–Leistungsübertragungsfunktion ist wie folgt gegeben $(\rm NEXT$ steht dabei für Near–End–Crosstalk$)$:
- $$|H_{\rm NEXT}(f)|^2 = \left ( K_{\rm NEXT} \cdot |f|\right )^{3/2}\hspace{0.05cm},\hspace{0.2cm}K_{\rm NEXT} = 6 \cdot 10^{-10}\,{\rm s} \hspace{0.05cm}.$$
Die Grafik zeigt die betrachtete Systemkonfiguration. Mit zwei Doppeladern sind die Teilnehmer $1$ und $2$ verbunden (je eine in beide Richtungen), während auf zwei anderen Doppeladern (nicht im gleichen Sternvierer) eine Verbindung zwischen Teilnehmer $3$ und Teilnehmer $4$ besteht.
Hinweise:
- Die Aufgabe gehört zum Kapitel Eigenschaften von Kupfer–Doppeladern im vorliegenden Buch.
- Es bezieht sich aber auch auf das Kapitel ISDN-Basisanschluss im Buch „Beispiele von Nachrichtensystemen”.
Fragebogen
Musterlösung
- Bei Nahnebensprechen (NEXT) befinden sich der störende Sender und der gestörte Empfänger am selben Ende der Leitung, bei Fernnebensprechen (FEXT) an unterschiedlichen Enden.
- Da aber auch die Störsignale auf der Kupferdoppelader sehr stark gedämpft werden, ist NEXT gegenüber FEXT stets der bei weitem dominante Störeffekt.
Richtig sind hier die Lösungsvorschläge 2 und 4:
- Der Empfänger $E_2$ wird hier besonders durch seinen eigenen Sender $S_2$, also durch Nahnebensprechen gestört.
- Die Beeinträchtigung von $E_2$ durch $S_3$ ist Fernnebensprechen, während $S_1$ für $E_2$ das Nutzsignal bereitstellt.
(2) Die Sendeleistung ist gleich dem Integral über das Leistungsdichtespektrum:
- $$P_{\rm S} = {\it\Phi}_{0} \cdot 2 f_0 = 5 \cdot 10^{-9}\, {\rm W}/{\rm Hz} \cdot 2 \cdot 10^{5}\,{\rm Hz}\hspace{0.15cm}\underline{ = 1\,{\rm mW}} \hspace{0.05cm}.$$
(3) Für die Empfangsleistung gilt (ohne den Anteil durch Nahnebensprechen):
- $$P_{\rm E} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm K}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot \int_{0}^{ f_0} \left [ 0.9 - 0.04 \cdot \frac{f}{f_0} \right ] \hspace{0.1cm}{\rm d}f $$
- $$\Rightarrow \hspace{0.3cm}P_{\rm E} = 2 {\it\Phi}_{0} \cdot \left [ 0.9 \cdot f_0 - \frac{0.04}{2} \cdot \frac{f_0^2}{f_0} \right ] = 2 {\it\Phi}_{0} \cdot 0.88 = 0.88 \cdot P_{\rm S}\hspace{0.15cm}\underline{ = 0.88 \,{\rm mW}} \hspace{0.05cm}.$$
(4) Für den störenden Leistungsanteil der Nebensprechstörung erhält man
- $$P_{\rm NEXT} = \int_{-\infty}^{ +\infty} {\it\Phi}_{s}(f) \cdot |H_{\rm NEXT}(f)|^2 \hspace{0.1cm}{\rm d}f = 2 {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot \int_{0}^{ f_0} f^{3/2} \hspace{0.1cm}{\rm d}f $$
- $$\Rightarrow \hspace{0.3cm} P_{\rm NEXT} = \frac{4}{5} \cdot {\it\Phi}_{0} \cdot {K_{\rm NEXT}\hspace{0.01cm}}^{3/2} \cdot f_0^{5/2} = 0.8 \cdot 5 \cdot 10^{-9}\, \frac{\rm W}{\rm Hz} \cdot \left ( 6 \cdot 10^{-10}\,{\rm s}\right )^{3/2} \cdot \left ( 10^{5}\,{\rm Hz}\right )^{5/2} = {0.186 \cdot 10^{-9}\,{\rm W}} \hspace{0.05cm} = \hspace{0.15cm}\underline{0.186 \,{\rm nW}} \hspace{0.05cm}.$$
(5) Es gilt ${P_{\rm E}}/{P_{\rm NEXT}} \approx 4.73 \cdot 10^{6}$. Daraus ergibt sich der logarithmische Wert zu
- $$10 \cdot {\rm lg}\hspace{0.15cm} {P_{\rm E}}/{P_{\rm NEXT}} = 10 \cdot {\rm lg}\hspace{0.15cm} (4.73 \cdot 10^{6}) \hspace{0.15cm}\underline{= 66.7\,\,{\rm dB}} \hspace{0.05cm}.$$