Aufgaben:Aufgabe 4.13: Vierstufige QAM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 13: Zeile 13:
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
  
Die Zuordnung der Symbole zu <i>Bitdupeln</i>&nbsp; kann ebenfalls der Grafik (rote Beschriftungen) entnommen werden. Hierbei ist die Graycodierung vorausgesetzt.
+
Die Zuordnung der Symbole zu&nbsp; "!Bitdupeln"&nbsp; kann ebenfalls der Grafik&nbsp; (rote Beschriftungen)&nbsp; entnommen werden.&nbsp; Hierbei ist die Graycodierung vorausgesetzt.
  
  
Zeile 20: Zeile 20:
  
  
''Hinweise:''
+
Hinweise:
* Die Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| Trägerfrequenzsysteme mit kohärenter Demodulation]].  
+
* Die Aufgabe gehört zum Kapitel&nbsp; [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation| "Trägerfrequenzsysteme mit kohärenter Demodulation"]].
* Bezug genommen eird insbesondere auf die Seite&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| Quadraturamplitudenmodulation]]&nbsp; (QAM).  
+
* Für die Teilaufgabe '''(4)''' ist der (zeitdiskrete) AWGN&ndash;Kanal mit der Varianz&nbsp; $\sigma_n^2 = N_0/2$&nbsp; vorausgesetzt.  
+
* Bezug genommen eird insbesondere auf die Seite&nbsp;  [[Digitalsignal%C3%BCbertragung/Tr%C3%A4gerfrequenzsysteme_mit_koh%C3%A4renter_Demodulation#Quadraturamplitudenmodulation_.28M.E2.80.93QAM.29| "Quadraturamplitudenmodulation"]]&nbsp; $\rm (QAM)$.
* Für die Wahrscheinlichkeit, dass durch das Rauschsignal&nbsp; $n$&nbsp; ein Symbol horizontal oder vertikal verfälscht wird, gilt mit der komplementären Gaußschen Fehlerfunktion  &nbsp;$\rm Q(x)$:
+
 +
* Für die Teilaufgabe&nbsp; '''(4)'''&nbsp; ist der (zeitdiskrete) AWGN&ndash;Kanal mit der Varianz&nbsp; $\sigma_n^2 = N_0/2$&nbsp; vorausgesetzt.
 +
 +
* Die Wahrscheinlichkeit,&nbsp; dass durch das Rauschen&nbsp; $n$&nbsp; ein Symbol horizontal oder vertikal verfälscht wird,&nbsp; ist mit der komplementären Gaußschen Fehlerfunktion  &nbsp;${\rm Q}(x)$:
 
:$$p = {\rm Pr}( n < -x_0) = {\rm Pr}( n > + x_0) = {\rm Q}(x_0 / \sigma_n)  
 
:$$p = {\rm Pr}( n < -x_0) = {\rm Pr}( n > + x_0) = {\rm Q}(x_0 / \sigma_n)  
 
  \hspace{0.05cm}.$$
 
  \hspace{0.05cm}.$$
Zeile 33: Zeile 36:
 
===Fragebogen===
 
===Fragebogen===
 
<quiz display=simple>
 
<quiz display=simple>
{Geben Sie als obere Schranke für die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$ die &bdquo;Union Bound&rdquo; an&nbsp; $(p_{\rm UB} &#8805; p_{\rm S})$. Es gelte&nbsp; $p = 0.1$.
+
{Geben Sie als obere Schranke für die Symbolfehlerwahrscheinlichkeit&nbsp; $p_{\rm S}$&nbsp;  die&nbsp; "Union Bound"&nbsp; an&nbsp; $(p_{\rm UB} &#8805; p_{\rm S})$.&nbsp; Es gelte&nbsp; $p = 0.1$.
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm UB}\ = \ $ { 0.2 3% }  
 
$p_{\rm UB}\ = \ $ { 0.2 3% }  
Zeile 41: Zeile 44:
 
$p_{\rm S}\ = \ $ { 0.19 3% }  
 
$p_{\rm S}\ = \ $ { 0.19 3% }  
  
{Wie groß ist die Bitfehlerwahrscheinlichkeit bei Graycodierung&nbsp; $p_{\rm B}$?
+
{Wie groß ist die Bitfehlerwahrscheinlichkeit&nbsp; $p_{\rm B}$&nbsp; bei Graycodierung?
 
|type="{}"}
 
|type="{}"}
 
$p_{\rm B}\ = \ $ { 0.1 3% }  
 
$p_{\rm B}\ = \ $ { 0.1 3% }  

Version vom 23. August 2022, 09:17 Uhr

Signalraumkonstellation der 4–QAM

Wir betrachten nun eine Quadraturamplitudenmodulation mit  $M = 4$  Symbolen und den (normierten) Signalraumpunkten

$$\boldsymbol{ s}_{\rm A} = (+1, +1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm B} = (-1, +1)\hspace{0.05cm},\hspace{0.2cm} \boldsymbol{ s}_{\rm C} = (-1, -1)\hspace{0.05cm},\hspace{0.2cm}\boldsymbol{ s}_{\rm D} = (+1, -1) \hspace{0.05cm}.$$

Die Symbole sind gleichwahrscheinlich. Damit kann man zur Berechnung der mittleren Symbolfehlerwahrscheinlichkeit auf die Mittelung verzichten.

Beispielsweise gilt:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) \hspace{0.05cm}.$$

Die Zuordnung der Symbole zu  "!Bitdupeln"  kann ebenfalls der Grafik  (rote Beschriftungen)  entnommen werden.  Hierbei ist die Graycodierung vorausgesetzt.




Hinweise:

  • Für die Teilaufgabe  (4)  ist der (zeitdiskrete) AWGN–Kanal mit der Varianz  $\sigma_n^2 = N_0/2$  vorausgesetzt.
  • Die Wahrscheinlichkeit,  dass durch das Rauschen  $n$  ein Symbol horizontal oder vertikal verfälscht wird,  ist mit der komplementären Gaußschen Fehlerfunktion  ${\rm Q}(x)$:
$$p = {\rm Pr}( n < -x_0) = {\rm Pr}( n > + x_0) = {\rm Q}(x_0 / \sigma_n) \hspace{0.05cm}.$$



Fragebogen

1

Geben Sie als obere Schranke für die Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$  die  "Union Bound"  an  $(p_{\rm UB} ≥ p_{\rm S})$.  Es gelte  $p = 0.1$.

$p_{\rm UB}\ = \ $

2

Wie groß ist die tatsächliche Symbolfehlerwahrscheinlichkeit  $p_{\rm S}$?

$p_{\rm S}\ = \ $

3

Wie groß ist die Bitfehlerwahrscheinlichkeit  $p_{\rm B}$  bei Graycodierung?

$p_{\rm B}\ = \ $

4

Welcher Zusammenhang besteht zwischen  $p_{\rm B}$  und  $E_{\rm B}/N_0$?

$p_{\rm B} = {\rm Q}\big [\sqrt {E_{\rm B}/N_0}\big ]$,
$p_{\rm B} = {\rm Q}\big [\sqrt {2E_{\rm B}/N_0}\big ]$,
$p_{\rm B} = {\rm Q}\big [\sqrt {E_{\rm B}/(2N_0)}\big ]$.


Musterlösung

(1)  Die „Union Bound” ist eine obere Schranke für die mittlere Symbolfehlerwahrscheinlichkeit. Für letztere gilt:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}({\cal{E}}) = {\rm Pr}( {\cal{E}} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet})= {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) \hspace{0.05cm}.$$
  • Dagegen gilt für die (verbesserte) „Union Bound” im vorliegenden Beispiel:
$$p_{\rm UB} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr}( \boldsymbol{ s}_{\rm B} \cup \boldsymbol{ s}_{\rm C} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) +{\rm Pr}( \boldsymbol{ s}_{\rm C} \cup \boldsymbol{ s}_{\rm D} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) = 2p = \underline{0.2} \hspace{0.05cm}.$$


(2)  Die beiden Wahrscheinlichkeiten, aus der sich die „Union Bound” additiv zusammensetzt, lassen sich geometrisch wie folgt deuten:

  • ${\rm Pr}(\boldsymbol{s}_{\rm B} \cup \boldsymbol{s}_{\rm C} | \boldsymbol{s}_{\rm A})$ ist die Wahrscheinlichkeit, dass der Empfangspunkt in der linken Halbebene liegt
    ⇒   die AWGN–Rauschkomponente $n_1$ ist negativ und betragsmäßig größer als $\sqrt {E}$.
  • ${\rm Pr}(\boldsymbol{s}_{\rm C} \cup \boldsymbol{s}_{\rm D} | \boldsymbol{s}_{\rm A})$ ist die Wahrscheinlichkeit, dass der Empfangspunkt in der unteren Halbebene liegt
    ⇒   die AWGN–Rauschkomponente $n_2$ ist negativ und betragsmäßig größer als $\sqrt {E}$.


Die „Union Bound” berücksichtigt also den dritten Quadranten zweimal. Diesen Fehler kann man hier relativ einfach kompensieren:

$$p_{\rm S} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} p_{\rm UB} - {\rm Pr}( \boldsymbol{ s}_{\rm C} \hspace{0.15cm}{\rm entschieden} \hspace{0.05cm}|\hspace{0.05cm} \boldsymbol{ s}_{\rm A}\hspace{0.15cm} {\rm gesendet}) = 2 p - {\rm Pr}\left [ ( n_1 < -\sqrt{E})\cap ( n_2 < -\sqrt{E})\right ] = 2p - p^2 = \underline{0.19} \hspace{0.05cm}.$$

Hierbei ist berücksichtigt, dass die Rauschkomponenten $n_1$ und $n_2$ voneinander unabhängig sind.


(3)  Wie in der Teilaufgabe (2) nachgewiesen wurde, gelten für die einzelnen Verfälschungswahrscheinlichkeiten:

  • Quadrant 2: ${\rm Pr}(\boldsymbol{s}_{\rm B} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.09$,
  • Quadrant 3: ${\rm Pr}(\boldsymbol{s}_{\rm C} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.01$,
  • Quadrant 4: ${\rm Pr}(\boldsymbol{s}_{\rm D} \ {\rm empfangen} \ | \ \boldsymbol{s}_{\rm A} \ {\rm gesendet}) = 0.09$.


Für die mittlere Bitfehlerwahrscheinlichkeit erhält man somit:

$$p_{\rm B} = { 1}/{ 2} \cdot \big [ 1 \cdot 0.09 + 2 \cdot 0.01 + 1 \cdot 0.09\big ]= \underline{0.1} = p \hspace{0.05cm}.$$
  • Berücksichtigt ist, dass der Quadrant 2 und der Quadrant 4 jeweils nur zu einem Bitfehler führt, der Quadrant 3 dagegen zu zweien.
  • Der Faktor $1/2$ berücksichtigt wieder, dass jeweils ein Symbol zwei Binärzeichen (Bit) beinhaltet.


(4)  Die Bitfehlerwahrscheinlichkeit ist nach der Lösung zur Teilaufgabe (2) gleich der Wahrscheinlichkeit, dass die beiden Rauschkomponenten gewisse Grenzen überschreiten:

$$p_{\rm B} = {\rm Pr}( n_1 < -\sqrt{E}) = {\rm Pr}( n_2 < -\sqrt{E}) \hspace{0.05cm}.$$
  • Beim AWGN–Kanal lautet diese Wahrscheinlichkeit mit der Varianz $\sigma_n^2 = N_0/2$:
$$p_{\rm B} = {\rm Q} \left ( { { \sqrt{E}}/{ \sigma_n} }\right ) = {\rm Q} \left ( \sqrt{ { {2E}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • Die mittlere Energie pro Symbol kann am einfachsten durch Mittelung über die quadratischen Abstände der Signalraumpunkte vom Ursprung bestimmt werden. Daraus ergibt sich $E_{\rm S} = 2E$.
  • Die mittlere Energie pro Bit ist halb so groß: $E_{\rm B} = E_{\rm S}/2 = E$. Daraus folgt:
$$p_{\rm B} = {\rm Q} \left ( \sqrt{ { {2E_{\rm B}}}/{ N_0} }\right ) \hspace{0.05cm}.$$
  • Richtig ist also der zweite Lösungsvorschlag.
  • Zum gleichen Ergebnis kommt man auch, wenn man die 4–QAM wie im Kapitel Struktur des optimalen Empfängers des Buches „Modulationsverfahren” als zwei orthogonale (das heißt: sich nicht störende) BPSK–Systeme über den gleichen Kanal betrachtet.