Aufgaben:Aufgabe 4.19: Orthogonale mehrstufige FSK: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 67: Zeile 67:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>. Bei der Konstellation <b>B</b> istOrthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.
+
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 3</u>:
 +
*Bei der Konstellation &nbsp;$\rm B$&nbsp; ist die Orthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.
 +
 
  
  
 
'''(2)'''&nbsp; Für die binäre FSK $(M = 2)$ gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:
 
'''(2)'''&nbsp; Für die binäre FSK $(M = 2)$ gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \underline{\approx 2.49 \%}  
+
:$$p_{\rm S} =  (-1)^{2} \cdot {1 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3}  \hspace{0.15cm}\underline{\approx 2.49 \%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Entsprechend erhält man für die ternäre FSK $(M = 3)$:
+
*Entsprechend erhält man für die ternäre FSK $(M = 3)$:
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 }  \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} +  
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
 
  (-1)^{3} \cdot {2 \choose 2 }  \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}=
   {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061  \underline{ =4.37\%}  
+
   {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061  \hspace{0.15cm}\underline{ =4.37\%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
  
Schließlich ergibt sich für die quaternäre FSK $(M = 4)$:
+
*Schließlich ergibt sich für die quaternäre FSK $(M = 4)$:
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
:$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 }  \cdot \frac{{\rm e }^{-x/2}}{2}  +  
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
 
  (-1)^{3} \cdot {3 \choose 2 }  \cdot \frac{{\rm e }^{-2x/3}}{3}
 
  +  (-1)^{4} \cdot {4 \choose 3 }  \cdot \frac{{\rm e }^{-3x/4 }}{4} =
 
  +  (-1)^{4} \cdot {4 \choose 3 }  \cdot \frac{{\rm e }^{-3x/4 }}{4} =
   {3}/ {2} \cdot{\rm e }^{-3} -  {\rm e }^{-4} + {\rm e }^{-4.5}  \underline{\approx 6.75\%}  
+
   {3}/ {2} \cdot{\rm e }^{-3} -  {\rm e }^{-4} + {\rm e }^{-4.5}  \hspace{0.15cm}\underline{\approx 6.75\%}  
 
   \hspace{0.05cm}.$$
 
   \hspace{0.05cm}.$$
 +
  
  
 
'''(3)'''&nbsp; Bei gleichem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} &#8805; p_{\rm S}$:
 
'''(3)'''&nbsp; Bei gleichem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} &#8805; p_{\rm S}$:
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
+
:$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
+
:$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
+
:$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max}  \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$
  
Analysiert man die Gleichung $p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ genauer, so erkennt man, dass diese Schranke genau die [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit| Union&ndash;Bound]] angibt:
+
Analysiert man die Gleichung &nbsp;$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$&nbsp; genauer, so erkennt man, dass diese Schranke genau die [[Digitalsignal%C3%BCbertragung/Approximation_der_Fehlerwahrscheinlichkeit#Union_Bound_-_Obere_Schranke_f.C3.BCr_die_Fehlerwahrscheinlichkeit| Union&ndash;Bound]] angibt:
 
* Beim Binärsystem gibt $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
 
* Beim Binärsystem gibt $1/2 \cdot  {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
* Beim <i>M</i>&ndash;stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ \text{...} \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$
+
* Beim <i>M</i>&ndash;stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$.
 
* Die &bdquo;Union&ndash;Bound&rdquo; berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M&ndash;1$ anderen Punkte durch den Faktor $M -1$.
 
* Die &bdquo;Union&ndash;Bound&rdquo; berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M&ndash;1$ anderen Punkte durch den Faktor $M -1$.
  
  
'''(4)'''&nbsp; Mit $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$ erhält man$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
+
'''(4)'''&nbsp; Mit &nbsp;$E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$&nbsp; erhält man$p_{\rm S, \hspace{0.05cm}max} =  (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.
  
*Nun wird die Fehlerwahrscheinlichkeit mit zunehmender Stufenzahl immer kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt.  
+
*Die Fehlerwahrscheinlichkeit wird mit zunehmender Stufenzahl kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt.  
*Der Faktor $M&ndash;1$ (dieser berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat dann weniger Einfluss als die Vergrößerung des negativen Exponenten:
+
*Der Faktor $M-1$ (berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat weniger Einfluss als die Vergrößerung des negativen Exponenten:
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$
 
:$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm}  {\rm e }^{-4.755} \hspace{0.5cm}  \underline{= 0.86\%} \hspace{0.05cm},$$

Version vom 19. März 2019, 16:55 Uhr

Signalraumkonstellationen

Wir betrachten in dieser letzten Übungsaufgabe zu diesem Kapitel  Frequency Shift Keying  (FSK) mit  $M$  Signalformen und setzen voraus, dass diese paarweise zueinander orthogonal sind. In diesem Fall können die äquivalenten Tiefpass–Signale  $s_i(t)$ mit $i = 1, \ \text{...} \ , M$  in folgender Form dargestellt werden:

$$s_i(t) = \sqrt{E_{\rm S}} \cdot \xi_i(t) \hspace{0.05cm}.$$

$\xi_i(t)$  sind komplexe Basisfunktionen, für die allgemein  $i = 1, \ \text{...} \ , N$  gilt. Bei orthogonaler Signalisierung ist allerdings stets  $M = N$.

Die Grafik zeigt drei verschiedene Signalraumkonstellationen. Jedoch beschreiben nicht alle drei eine orthogonale FSK. Hierauf wird in der Teilaufgabe (1) Bezug genommen.

Im  Theorieteil  ist die exakte Formel für die Wahrscheinlichkeit einer korrekten Entscheidung bei AWGN–Störung angegeben:

$${\rm Pr}({\cal{C}}) =\sum_{i = 0}^{M-1} (-1)^i \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$

Daraus lässt sich sehr einfach die Symbolfehlerwahrscheinlichkeit berechnen:

$$p_{\rm S} = {\rm Pr}({\cal{E}}) = 1 - {\rm Pr}({\cal{C}}) = \sum_{i = 1}^{M-1} (-1)^{i+1} \cdot {M-1 \choose i } \cdot \frac{1}{i+1} \cdot {\rm e }^{ - i/(i+1) \hspace{0.05cm}\cdot \hspace{0.05cm}E_{\rm S}/ N_0} \hspace{0.05cm}.$$

Eine obere Schranke  $(p_{\rm S, \ max} ≥ p_{\rm S})$  ergibt sich aufgrund der alternierenden Vorzeichen, wenn man von dieser Summe nur den ersten Term  $(i=1)$  berücksichtigt:

$$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})} \hspace{0.05cm}.$$

In der Teilaufgabe (4) soll diese Schranke bei gegebenem Verhältnis  $E_{\rm B}/N_0$  ausgewertet werden, wobei  $E_{\rm B}$  die mittlere Signalenergie pro Bit angibt:

$$E_{\rm B} = \frac{ E_{\rm S} } { {\rm log_2}\hspace{0.1cm}(M)} \hspace{0.05cm}.$$




Hinweise:



Fragebogen

1

Welche der obigen Signalraumkonstellationen gelten für orthogonale FSK?

Konstellation  $\rm A$,
Konstellation  $\rm B$,
Konstellation  $\rm C$.

2

Berechnen Sie für  $E_{\rm S}/N_0 = 6$  die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm S}$  bezeichnet die Symbolenergie.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S} \ = \ $

$\ \%$

3

Berechnen Sie für  $E_{\rm S}/N_0 = 6$  die angegebenen oberen Schranken  $p_{\rm S, \ max}$ für die Fehlerwahrscheinlichkeiten.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$

4

Berechnen Sie für  $E_{\rm B}/N_0 = 6$  die Fehlerwahrscheinlichkeit der binären, ternären und quaternären FSK. $E_{\rm B}$  bezeichnet die Bitenergie.

$M = 2 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 3 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$
$M = 4 \text{:} \hspace{0.4cm} p_{\rm S, \ max} \ = \ $

$\ \%$


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 3:

  • Bei der Konstellation  $\rm B$  ist die Orthogonalität nicht gegeben. Vielmehr gilt hier $M = 3$ und $N = 2$.


(2)  Für die binäre FSK $(M = 2)$ gilt mit der Abkürzung $x = E_{\rm S}/N_0 = 6$:

$$p_{\rm S} = (-1)^{2} \cdot {1 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-x/2 } = {1}/{2} \cdot {\rm e }^{-3} \hspace{0.15cm}\underline{\approx 2.49 \%} \hspace{0.05cm}.$$
  • Entsprechend erhält man für die ternäre FSK $(M = 3)$:
$$p_{\rm S} = (-1)^{2} \cdot {2 \choose 1 } \cdot {1}/{2} \cdot {\rm e }^{-(1/2) \hspace{0.05cm} \cdot \hspace{0.05cm} x} + (-1)^{3} \cdot {2 \choose 2 } \cdot {1}/{3}\cdot {\rm e }^{-(2/3) \hspace{0.05cm} \cdot \hspace{0.05cm} x}= {\rm e }^{-3} - {1}/{3} \cdot {\rm e }^{-4} \approx 0.0498 - 0.0061 \hspace{0.15cm}\underline{ =4.37\%} \hspace{0.05cm}.$$
  • Schließlich ergibt sich für die quaternäre FSK $(M = 4)$:
$$p_{\rm S} = (-1)^{2} \cdot {3 \choose 1 } \cdot \frac{{\rm e }^{-x/2}}{2} + (-1)^{3} \cdot {3 \choose 2 } \cdot \frac{{\rm e }^{-2x/3}}{3} + (-1)^{4} \cdot {4 \choose 3 } \cdot \frac{{\rm e }^{-3x/4 }}{4} = {3}/ {2} \cdot{\rm e }^{-3} - {\rm e }^{-4} + {\rm e }^{-4.5} \hspace{0.15cm}\underline{\approx 6.75\%} \hspace{0.05cm}.$$


(3)  Bei gleichem $E_{\rm S}/N_0 = 6$ gilt stets $p_{\rm S, \ max} ≥ p_{\rm S}$:

$$M =2\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=2.49\%} = p_{\rm S} \hspace{0.05cm},$$
$$M =3\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=4.98\%} > 4.37\% = p_{\rm S} \hspace{0.05cm},$$
$$M =4\text{:} \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{0.15cm}\underline{=7.47\%} > {6.75\%} = p_{\rm S} \hspace{0.05cm}.$$

Analysiert man die Gleichung  $p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$  genauer, so erkennt man, dass diese Schranke genau die Union–Bound angibt:

  • Beim Binärsystem gibt $1/2 \cdot {\rm e }^{-E_{\rm S}/(2N_{\rm 0})}$ die Verfälschungswahrscheinlichkeit an, zum Beispiel von $\boldsymbol{s}_1$ nach $\boldsymbol{s}_2$ oder umgekehrt.
  • Beim M–stufigen System ist der Abstand zwischen $\boldsymbol{s}_1$ und $\boldsymbol{s}_2$ genau so groß. Aber auch die Punkte $\boldsymbol{s}_1, \ \text{... ,} \, \boldsymbol{s}_M$ liegen im gleichen Abstand zu $\boldsymbol{s}_1$ bzw. zu $\boldsymbol{s}_2$.
  • Die „Union–Bound” berücksichtigt die Verfälschungsmöglichkeiten eines Punktes zu jedem der allgemein $M–1$ anderen Punkte durch den Faktor $M -1$.


(4)  Mit  $E_{\rm B} = E_{\rm S}/{\rm log}_2(M)$  erhält man$p_{\rm S, \hspace{0.05cm}max} = (M-1)/2 \cdot {\rm e }^{-\log_2 \ (M) E_{\rm B}/(2N_{\rm 0})}$.

  • Die Fehlerwahrscheinlichkeit wird mit zunehmender Stufenzahl kleiner, da bei konstantem $E_{\rm B}$ die Energie $E_{\rm S}$ pro Symbol um den Faktor ${\rm log}_2 \, (M)$ zunimmt.
  • Der Faktor $M-1$ (berücksichtigt die Verfälschungsmöglichkeiten eines Signalraumpunktes) hat weniger Einfluss als die Vergrößerung des negativen Exponenten:
$$M =2\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{ 2} \cdot {\rm e }^{-3} \hspace{0.15cm} \underline{= 2.49\%} \hspace{0.05cm},$$
$$M =3\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm e }^{-4.755} \hspace{0.5cm} \underline{= 0.86\%} \hspace{0.05cm},$$
$$M =4\hspace{-0.1cm}: \hspace{0.2cm} p_{\rm S, \hspace{0.05cm}max} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {3}/{ 2} \cdot {\rm e }^{-6} \hspace{0.15cm} \underline{=0.37\%} \hspace{0.05cm}.$$