Aufgaben:Aufgabe 3.12Z: Ring und Rückkopplung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 36: Zeile 36:
  
 
{Wie lautet die Ersetzung  $E(X, \, U)$  eines Ringes?
 
{Wie lautet die Ersetzung  $E(X, \, U)$  eines Ringes?
|type="[]"}
+
|type="()"}
 
- $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
 
- $E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
 
+ $E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
 
+ $E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
Zeile 49: Zeile 49:
  
 
{Wie lautet die Ersetzung  $F(X, \, U)$  einer Rückkopplung?
 
{Wie lautet die Ersetzung  $F(X, \, U)$  einer Rückkopplung?
|type="[]"}
+
|type="()"}
 
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
 
+ $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
 
- $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.
 
- $F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.
Zeile 57: Zeile 57:
 
{{ML-Kopf}}
 
{{ML-Kopf}}
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:  
 
'''(1)'''&nbsp; Richtig sind die <u>Lösungsvorschläge 1 und 2</u>:  
*Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$&ndash;mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...}$ und geht abschließend von $S_2$ nach $S_3$ weiter.
+
*Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$&ndash;mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$ und geht abschließend von $S_2$ nach $S_3$ weiter.
 +
 
  
  
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
 
'''(2)'''&nbsp; Richtig ist der <u>Lösungsvorschlag 2</u>:
*Entsprechend den Ausführungen zur Teilaufgabe (1) erhält man für die Ersetzung des Ringes  
+
*Entsprechend den Ausführungen zur Teilaufgabe '''(1)''' erhält man für die Ersetzung des Ringes  
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
:$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A  \cdot C \cdot B + A  \cdot C^2 \cdot B + A  \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}]
 
\hspace{0.05cm}.$$
 
\hspace{0.05cm}.$$
Zeile 75: Zeile 76:
 
* anschließend $j$&ndash;mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
 
* anschließend $j$&ndash;mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
 
* abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,
 
* abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,
 +
  
  
 
'''(4)'''&nbsp; Richtig ist also der <u>Lösungsvorschlag 1</u>:
 
'''(4)'''&nbsp; Richtig ist also der <u>Lösungsvorschlag 1</u>:
*Entsprechend der Musterlösung zur Teilaufgabe (3) gilt:
+
*Entsprechend der Musterlösung zur Teilaufgabe '''(3)''' gilt:
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
 
:$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  

Aktuelle Version vom 1. Juli 2019, 16:39 Uhr

Ring und Rückkopplung im Zustandsübergangsdiagramm

Um die Pfadgewichtsfunktion  $T(X)$  eines Faltungscodes aus dem Zustandsübergangsdiagramm bestimmen zu können, ist es erforderlich, das Diagramm so zu reduzieren, bis es durch eine einzige Verbindung vom Startzustand zum Endzustand dargestellt werden kann.

Im Zuge dieser Diagrammreduktion können auftreten:

  • serielle und parallele Übergänge,
  • ein Ring entsprechend der obigen Skizze,
  • eine Rückkopplung entsprechend der unteren Skizze.


Für diese beiden Graphen sind die Entsprechungen  $E(X, \, U)$  und  $F(X, \, U)$  in Abhängigkeit der angegebenen Funktionen  $A(X, \, U), \ B(X, \ U), \ C(X, \, U), \ D(X, \, U)$  zu ermitteln.





Hinweise:



Fragebogen

1

Welche der aufgeführten Übergänge sind beim Ring möglich?

$S_1 → S_2 → S_3$,
$S_1 → S_2 → S_2 → S_2 → S_3$,
$S_1 → S_2 → S_1 → S_2 → S_3$.

2

Wie lautet die Ersetzung  $E(X, \, U)$  eines Ringes?

$E(X, \, U) = [A(X, \, U) + B(X, \, U)] \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U)]$,
$E(X, \, U) = A(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -B(X, \, U)]$.

3

Welche der aufgeführten Übergänge sind bei Rückkopplung möglich?

$S_1 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_4$,
$S_1 → S_2 → S_3 → S_2 → S_3 → S_2 → S_3 → S_4$.

4

Wie lautet die Ersetzung  $F(X, \, U)$  einer Rückkopplung?

$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \cdot C(X, \, U) \ / \ [1 \, -C(X, \, U) \cdot D(X, \, U)]$
$F(X, \, U) = A(X, \, U) \cdot B(X, \, U) \ / \ [1 \, -C(X, \, U) + D(X, \, U)]$.


Musterlösung

(1)  Richtig sind die Lösungsvorschläge 1 und 2:

  • Allgemein ausgedrückt: Man geht zunächst von $S_1$ nach $S_2$, verbleibt $j$–mal im Zustand $S_2 \ (j = 0, \ 1, \, 2, \ \text{ ...})$ und geht abschließend von $S_2$ nach $S_3$ weiter.


(2)  Richtig ist der Lösungsvorschlag 2:

  • Entsprechend den Ausführungen zur Teilaufgabe (1) erhält man für die Ersetzung des Ringes
$$E \hspace{-0.15cm} \ = \ \hspace{-0.15cm} A \cdot B + A \cdot C \cdot B + A \cdot C^2 \cdot B + A \cdot C^3 \cdot B + \text{ ...} \hspace{0.1cm}=A \cdot B \cdot [1 + C + C^2+ C^3 +\text{ ...}\hspace{0.1cm}] \hspace{0.05cm}.$$
  • Der Klammerausdruck ergibt $1/(1 \, –C)$.
$$E(X, U) = \frac{A(X, U) \cdot B(X, U)}{1- C(X, U)} \hspace{0.05cm}.$$


(3)  Richtig sind die Lösungsvorschläge 1, 3 und 4:

  • Man geht zunächst von $S_1$ nach $S_2 \ \Rightarrow \ A(X, \, U)$,
  • dann von $S_2$ nach $S_3 \ \Rightarrow \ C(X, \, U)$,
  • anschließend $j$–mal zurück nach $S_2$ und wieder nach $S_3 \ (j = 0, \ 1, \ 2, \ \text{ ...} \ ) \ \Rightarrow \ E(X, \, U)$,
  • abschließend von $S_3$ nach $S_4 \ \Rightarrow \ B(X, \, U)$,


(4)  Richtig ist also der Lösungsvorschlag 1:

  • Entsprechend der Musterlösung zur Teilaufgabe (3) gilt:
$$F(X, U) = A(X, U) \cdot C(X, U) \cdot E(X, U) \cdot B(X, U)\hspace{0.05cm}$$
  • Hierbei beschreibt $E(X, \, U)$ den Weg „$j$–mal” zurück nach $S_2$ und wieder nach $S_3 \ (j =0, \ 1, \ 2, \ \text{ ...})$:
$$E(X, U) = 1 + D \cdot C + (1 + D)^2 + (1 + D)^3 + \text{ ...} \hspace{0.1cm}= \frac{1}{1-C \hspace{0.05cm} D} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} F(X, U) = \frac{A(X, U) \cdot B(X, U)\cdot C(X, U)}{1- C(X, U) \cdot D(X, U)} \hspace{0.05cm}.$$