Aufgaben:Aufgabe 2.3Z: Schwingungsparameter: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 68: Zeile 68:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''   Es gilt $T_0 = t_2 - t_1 = 12\, \text{ms}$ und $f_0 = 1/T_0 \hspace{0.15cm} \underline{\approx 83.33\, \text{Hz}}$.
+
'''(1)'''   Es gilt  $T_0 = t_2 - t_1 = 12\, \text{ms}$  und  $f_0 = 1/T_0 \hspace{0.15cm} \underline{\approx 83.33\, \text{Hz}}$.
  
  
'''(2)'''  Die Verschiebung beträgt $\tau \hspace{0.1cm} \underline{= 2\, \text{ms}}$ und die Phase ist $\varphi = 2\pi \cdot \tau/T_0 = \pi/3$ entsprechend $\varphi =\hspace{0.15cm} \underline{60^{\circ}}$.
 
  
 +
'''(2)'''  Die Verschiebung beträgt  $\tau \hspace{0.1cm} \underline{= 2\, \text{ms}}$  und die Phase ist  $\varphi = 2\pi \cdot \tau/T_0 = \pi/3$  entsprechend  $\varphi =\hspace{0.15cm} \underline{60^{\circ}}$.
  
'''(3)'''  Aus dem Wert zum Zeitpunkt $t = 0$ folgt für die Amplitude ${C}$:
+
 
 +
 
 +
'''(3)'''  Aus dem Wert zum Zeitpunkt  $t = 0$  folgt für die Amplitude  ${C}$:
 
:$$x_0=x(t=0)=C\cdot\cos(-60\,^\circ)={C}/{2}=\rm 3\,V
 
:$$x_0=x(t=0)=C\cdot\cos(-60\,^\circ)={C}/{2}=\rm 3\,V
 
\hspace{0.3 cm} \Rightarrow \hspace{0.3 cm}\hspace{0.15cm}\underline{\it C=\rm 6\,V}.$$
 
\hspace{0.3 cm} \Rightarrow \hspace{0.3 cm}\hspace{0.15cm}\underline{\it C=\rm 6\,V}.$$
 +
  
 
'''(4)'''  Die dazugehörige Spektralfunktion lautet:
 
'''(4)'''  Die dazugehörige Spektralfunktion lautet:
 
:$$X(f)={C}/{2}\cdot{\rm e}^{-{\rm j}\varphi}\cdot\delta(f-f_0)+{C}/{2}\cdot{\rm e}^{{\rm j}\varphi}\cdot\delta(f+f_0).$$
 
:$$X(f)={C}/{2}\cdot{\rm e}^{-{\rm j}\varphi}\cdot\delta(f-f_0)+{C}/{2}\cdot{\rm e}^{{\rm j}\varphi}\cdot\delta(f+f_0).$$
  
:Das Gewicht der Diraclinie bei $f = f_0$ (erster Term) ist   ${C}/2 \cdot {\rm e}^{–\text{j}\varphi} = 3 \,\text{V} \cdot \cos(60^\circ)- 3 \,\text{V} \cdot \sin(60^\circ)\hspace{0.05cm}\approx \underline{1.5 \,\text{V} - \text{j} \cdot 2.6 \,\text{V}}$.
+
*Das Gewicht der Diraclinie bei  $f = f_0$  (erster Term) ist   ${C}/2 \cdot {\rm e}^{–\text{j}\varphi} = 3 \,\text{V} \cdot \cos(60^\circ)- 3 \,\text{V} \cdot \sin(60^\circ)\hspace{0.05cm}\approx \underline{1.5 \,\text{V} - \text{j} \cdot 2.6 \,\text{V}}$.
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  
  
 
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]
 
[[Category:Aufgaben zu Signaldarstellung|^2. Periodische Signale^]]

Version vom 2. September 2019, 17:11 Uhr

Definition von  $x_0$,  $t_1$  und  $t_2$

Jede harmonische Schwingung kann auch in der Form

$$x(t)=C\cdot\cos\bigg(2\pi \cdot \frac{t-\tau}{T_0}\bigg)$$

geschrieben werden. Die Schwingung ist somit durch drei Parameter vollständig bestimmt:

  • die Amplitude  $C$,
  • die Periodendauer  $T_0$,
  • die Verschiebung  $\tau$  gegenüber einem Cosinussignal.


Eine zweite Darstellungsform lautet mit der Grundfrequenz  $f_0$  und der Phase  $\varphi$:

$$x(t)=C \cdot\cos(2\pi f_0t-\varphi).$$

Von einer harmonischen Schwingung ist nun bekannt, dass

  • das erste Signalmaximum bei  $t_1 = 2 \,\text{ms}$  auftritt,
  • das zweite Signalmaximum bei  $t_2 = 14 \,\text{ms}$  auftritt,
  • der Wert  $x_0 ={x(t = 0)} = 3 \,\text{V}$  ist.




Hinweis:



Fragebogen

1

Wie groß ist die Periodendauer  $T_0$  und die Grundfrequenz  $f_0$?

$T_0\hspace{0.2cm} = \ $

 $\text{ms}$
$f_0\hspace{0.2cm} = \ $

 $\text{Hz}$

2

Welchen Wert haben hier die Verschiebung  $\tau$  und die Phase  $\varphi$  $($in  $\text{Grad})$ ?

$\tau\hspace{0.25cm} = \ $

 $\text{ms}$
$\varphi\hspace{0.2cm} = \ $

 $\text{Grad}$

3

Wie groß ist die Amplitude der harmonischen Schwingung?

${C}\ = \ $

 $\text{V}$

4

Wie lautet das Spektrum  $X(f)$?  Welches Gewicht hat die Spektrallinie bei  $+f_0$ ?

$\text{Re}\big[X(f = f_0)\big]\ = \ $

 $\text{V}$
$\text{Im}\big[X(f = f_0)\big] \ = \ $

 $\text{V}$


Musterlösung

(1)  Es gilt  $T_0 = t_2 - t_1 = 12\, \text{ms}$  und  $f_0 = 1/T_0 \hspace{0.15cm} \underline{\approx 83.33\, \text{Hz}}$.


(2)  Die Verschiebung beträgt  $\tau \hspace{0.1cm} \underline{= 2\, \text{ms}}$  und die Phase ist  $\varphi = 2\pi \cdot \tau/T_0 = \pi/3$  entsprechend  $\varphi =\hspace{0.15cm} \underline{60^{\circ}}$.


(3)  Aus dem Wert zum Zeitpunkt  $t = 0$  folgt für die Amplitude  ${C}$:

$$x_0=x(t=0)=C\cdot\cos(-60\,^\circ)={C}/{2}=\rm 3\,V \hspace{0.3 cm} \Rightarrow \hspace{0.3 cm}\hspace{0.15cm}\underline{\it C=\rm 6\,V}.$$


(4)  Die dazugehörige Spektralfunktion lautet:

$$X(f)={C}/{2}\cdot{\rm e}^{-{\rm j}\varphi}\cdot\delta(f-f_0)+{C}/{2}\cdot{\rm e}^{{\rm j}\varphi}\cdot\delta(f+f_0).$$
  • Das Gewicht der Diraclinie bei  $f = f_0$  (erster Term) ist   ${C}/2 \cdot {\rm e}^{–\text{j}\varphi} = 3 \,\text{V} \cdot \cos(60^\circ)- 3 \,\text{V} \cdot \sin(60^\circ)\hspace{0.05cm}\approx \underline{1.5 \,\text{V} - \text{j} \cdot 2.6 \,\text{V}}$.