Aufgaben:Aufgabe 1.3: Systemvergleich beim AWGN–Kanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 5: Zeile 5:
 
[[Datei:P_ID960__Mod_A_1_3.png|right|frame|Systemvergleich beim AWGN–Kanal]]
 
[[Datei:P_ID960__Mod_A_1_3.png|right|frame|Systemvergleich beim AWGN–Kanal]]
 
Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  [[Modulationsverfahren/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|AWGN–Kanal]]  aus und beschreiben folgendes doppelt–logarithmische Diagramm:
 
Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  [[Modulationsverfahren/Qualitätskriterien#Einige_Anmerkungen_zum_AWGN.E2.80.93Kanalmodell|AWGN–Kanal]]  aus und beschreiben folgendes doppelt–logarithmische Diagramm:
*Die Ordinate gibt den Sinken–Störabstand (SNR logarithmiert)  $10 · \lg ρ_v$  in dB an.
+
*Die Ordinate gibt den Sinken–Störabstand  $\rm (SNR$,  logarithmiert$)$  $10 · \lg ρ_v$  in dB an.
*Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen; für die normierte Leistungskenngröße gilt:
+
*Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen;  für die normierte Leistungskenngröße gilt:
 
:$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
 
:$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
*In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$, der Kanaldämpfungsfaktor  $α_{\rm K}$, die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
+
*In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$,  der Kanaldämpfungsfaktor  $α_{\rm K}$,  die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
 
* Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
 
* Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
 
:$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm
 
:$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm
Zeile 15: Zeile 15:
 
B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$
 
B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$
  
In der Grafik sind zwei Systeme eingezeichnet, deren  $(x, y)$–Verlauf wie folgt beschrieben werden kann:
+
In der Grafik sind zwei Systeme eingezeichnet,  deren  $(x, y)$–Verlauf wie folgt beschrieben werden kann:
 
*Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
 
*Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
 
:$$y = x+1.$$
 
:$$y = x+1.$$
Zeile 22: Zeile 22:
 
Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:
 
Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:
 
:$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$
 
:$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$
So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$  bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.
+
So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$   bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.
  
  
Zeile 29: Zeile 29:
  
  
 
+
Hinweise:  
 
 
 
 
''Hinweise:''
 
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
 
*Die Aufgabe gehört zum  Kapitel  [[Modulationsverfahren/Qualitätskriterien|Qualitätskriterien]].
 
*Bezug genommen wird insbesondere auf die Seite   [[Modulationsverfahren/Qualitätskriterien#Untersuchungen_beim_AWGN.E2.80.93Kanal|Untersuchungen beim AWGN-Kanal]].
 
*Bezug genommen wird insbesondere auf die Seite   [[Modulationsverfahren/Qualitätskriterien#Untersuchungen_beim_AWGN.E2.80.93Kanal|Untersuchungen beim AWGN-Kanal]].
Zeile 47: Zeile 44:
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 50 3% } $\ \text{dB}$
  
{Es wird nun  $10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$  gefordert.  Durch welche Maßnahmen (jeweils für sich allein) ist dies zu erreichen?
+
{Es wird nun  $10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$  gefordert.  Durch welche Maßnahmen  (jeweils für sich allein)  ist dies zu erreichen?
 
|type="[]"}
 
|type="[]"}
 
- Erhöhung der Sendeleistung von  $P_{\rm S}= 5\text{ kW}$  auf $10\text{ kW}$ .
 
- Erhöhung der Sendeleistung von  $P_{\rm S}= 5\text{ kW}$  auf $10\text{ kW}$ .
 
+ Erhöhung des Kanalübertragungsfaktors von  $α_{\rm K} = 0.001$  auf  $0.004$.
 
+ Erhöhung des Kanalübertragungsfaktors von  $α_{\rm K} = 0.001$  auf  $0.004$.
 
+ Reduzierung der Rauschleistungsdichte auf  $N_0=10^{–11 }\text{ W/Hz}$.
 
+ Reduzierung der Rauschleistungsdichte auf  $N_0=10^{–11 }\text{ W/Hz}$.
- Erhöhung der NF–Bandbreite von  $B_{\rm NF}= 5\text{ kHz}$  auf  $\text{ kHz}$.
+
- Erhöhung der NF–Bandbreite von  $B_{\rm NF}= 5\text{ kHz}$  auf  $10\text{ kHz}$.
  
 
{Welcher Störabstand ergibt sich bei  $\text{System B}$  mit  $10 · \lg ξ = 40\text{ dB}$?
 
{Welcher Störabstand ergibt sich bei  $\text{System B}$  mit  $10 · \lg ξ = 40\text{ dB}$?
Zeile 58: Zeile 55:
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
 
$10 · \lg \hspace{0.05cm}ρ_v \ = \ $ { 57 3% } $\ \text{dB}$
  
{Gefordert wird der Störabstand  $10 · \lg ρ_v = 50\text{ dB}$.  Welche Sendeleistung  $P_{\rm S}$ genügt bei  $\text{System B}$, um diese Qualität zu erzielen?
+
{Gefordert wird der Störabstand  $10 · \lg ρ_v = 50\text{ dB}$.  Welche Sendeleistung  $P_{\rm S}$  genügt bei  $\text{System B}$,  um diese Qualität zu erzielen?
 
|type="{}"}
 
|type="{}"}
 
$P_{\rm S} \ = \ $ { 0.3 3% } $\ \text{ kW }$
 
$P_{\rm S} \ = \ $ { 0.3 3% } $\ \text{ kW }$

Version vom 16. November 2021, 12:21 Uhr

Systemvergleich beim AWGN–Kanal

Für den Vergleich verschiedener Modulationsverfahren und Demodulatoren hinsichtlich der Rauschempfindlichkeit gehen wir meist vom so genannten  AWGN–Kanal  aus und beschreiben folgendes doppelt–logarithmische Diagramm:

  • Die Ordinate gibt den Sinken–Störabstand  $\rm (SNR$,  logarithmiert$)$  $10 · \lg ρ_v$  in dB an.
  • Auf der Abszisse ist  $10 · \lg ξ$  aufgetragen;  für die normierte Leistungskenngröße gilt:
$$ \xi = \frac{P_{\rm S} \cdot \alpha_{\rm K}^2 }{{N_0} \cdot B_{\rm NF}}\hspace{0.05cm}.$$
  • In  $ξ$  sind also die Sendeleistung  $P_{\rm S}$,  der Kanaldämpfungsfaktor  $α_{\rm K}$,  die Rauschleistungsdichte  $N_0$  sowie die Bandbreite  $B_{\rm NF}$  des Nachrichtensignals in geeigneter Weise zusammengefasst.
  • Wenn nicht ausdrücklich etwas anderes angegeben ist, soll in der Aufgabe von folgenden Werten ausgegangen werden:
$$P_{\rm S}= 5 \;{\rm kW}\hspace{0.05cm}, \hspace{0.2cm} \alpha_{\rm K} = 0.001\hspace{0.05cm}, \hspace{0.2cm} {N_0} = 10^{-10}\;{\rm W}/{\rm Hz}\hspace{0.05cm}, \hspace{0.2cm} B_{\rm NF}= 5\; {\rm kHz}\hspace{0.05cm}.$$

In der Grafik sind zwei Systeme eingezeichnet,  deren  $(x, y)$–Verlauf wie folgt beschrieben werden kann:

  • Das  $\text{System A}$  ist gekennzeichnet durch die folgende Gleichung:
$$y = x+1.$$
  • Entsprechend gilt für das  $\text{System B}$:
$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right)\hspace{0.05cm}.$$

Die in der Grafik zusätzlich grün eingezeichneten Achsenbeschriftungen haben folgende Bedeutung:

$$ x = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\xi} {10 \,{\rm dB}}\hspace{0.05cm}, \hspace{0.3cm}y = \frac{10 \cdot {\rm lg} \hspace{0.1cm}\rho_v} {10 \,{\rm dB}}\hspace{0.05cm}.$$

So steht  $x = 4$  für  $10 · \lg ξ = 40\text{ dB}$   bzw.  $ξ = 10^4$  und  $y = 5$  steht für  $10 · \lg ρ_v= 50\text{ dB}$ , also  $ρ_v = 10^5$.




Hinweise:


Fragebogen

1

Welcher Sinken–Störabstand (in dB) ergibt sich bei  $\text{System A}$  mit  $P_{\rm S}= 5 \;{\rm kW}$,   $\alpha_{\rm K} = 0.001$,   $N_0 = 10^{-10}\;{\rm W}/{\rm Hz}$,   $B_{\rm NF}= 5\; {\rm kHz}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

2

Es wird nun  $10 · \lg \hspace{0.05cm} ρ_v ≥ 60\text{ dB}$  gefordert.  Durch welche Maßnahmen  (jeweils für sich allein)  ist dies zu erreichen?

Erhöhung der Sendeleistung von  $P_{\rm S}= 5\text{ kW}$  auf $10\text{ kW}$ .
Erhöhung des Kanalübertragungsfaktors von  $α_{\rm K} = 0.001$  auf  $0.004$.
Reduzierung der Rauschleistungsdichte auf  $N_0=10^{–11 }\text{ W/Hz}$.
Erhöhung der NF–Bandbreite von  $B_{\rm NF}= 5\text{ kHz}$  auf  $10\text{ kHz}$.

3

Welcher Störabstand ergibt sich bei  $\text{System B}$  mit  $10 · \lg ξ = 40\text{ dB}$?

$10 · \lg \hspace{0.05cm}ρ_v \ = \ $

$\ \text{dB}$

4

Gefordert wird der Störabstand  $10 · \lg ρ_v = 50\text{ dB}$.  Welche Sendeleistung  $P_{\rm S}$  genügt bei  $\text{System B}$,  um diese Qualität zu erzielen?

$P_{\rm S} \ = \ $

$\ \text{ kW }$

5

Für welchen Wert von  $10 · \lg ξ$  ist die Verbesserung von  $\text{System B}$  gegenüber  $\text{System A}$  am größten?

$10 · \lg \hspace{0.05cm} ξ \ = \ $

$\ \text{dB}$


Musterlösung

(1)  Die normierte Leistungskenngröße ergibt sich mit diesen Werten zu

$$\xi = \frac{5 \cdot 10^3\,{\rm W}\cdot 10^{-6} }{10^{-10}\,{\rm W}/{\rm Hz} \cdot 5 \cdot 10^3\,{\rm Hz}} = 10^4 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 40\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} x=4 \hspace{0.05cm}.$$
  • Damit ergibt sich der Hilfsordinatenwert  $y = 5$, was zum Sinken-Störabstand  $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 50 \ \rm dB}$  führt.



(2)  Richtig sind die Alternativen 2 und 3:

Diese Forderung entspricht gegenüber dem bisherigen System einer Erhöhung des Störabstandes um  $10$  dB, so dass auch  $10 · \lg \hspace{0.05cm}ξ$  um  $10$  dB erhöht werden muss:

$$10 \cdot {\rm lg} \hspace{0.1cm}\xi = 50\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \xi=10^5 \hspace{0.05cm}.$$

Ein  $10$–fach größerer  $ξ$–Wert wird erreicht – vorausgesetzt die anderen Parameter bleiben jeweils gleich:

  • durch die Sendeleistung  $P_{\rm S} = 50$  kW  statt  $5$  kW,
  • durch den Kanalübertragungsfaktor  $α_{\rm K} = 0.00316$  anstelle von  $0.001$,
  • durch die Rauschleistungsdichte  $N_0 = 10^{ –11 }$  W/Hz  statt  $10^{ –10 }$  W/Hz,
  • durch die Bandbreite  $B_{\rm NF} = 0.5$  kHz  statt  $5$  kHz.


(3)  Für  $10 · \lg \hspace{0.05cm} ξ = 40$  dB ist die Hilfsgröße  $x = 4$.  Damit ergibt sich für die Hilfsgröße der Ordinate:

$$y= 6 \cdot \left(1 - {\rm e}^{-3} \right)\approx 5.7 \hspace{0.05cm}.$$
  • Dies entspricht dem Sinken–Störabstand  $10 · \lg \hspace{0.05cm} ρ_v\hspace{0.15cm}\underline{ = 57 \ \rm dB}$, also einer Verbesserung gegenüber dem  $\text{System A}$  um  $7$  dB.


(4)  Diese Problemstellung wird durch folgende Gleichung beschrieben:

$$ y= 6 \cdot \left(1 - {\rm e}^{-x+1} \right) = 5 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} {\rm e}^{-x+1} ={1}/{6}\hspace{0.3cm} \Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \approx 2.79 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = 27.9\,{\rm dB}\hspace{0.05cm}.$$
  • Bei  $\text{System A}$  war hierfür  $10 · \lg \hspace{0.05cm} \xi = 40$  dB notwendig, was bei den weiter gegebenen Zahlenwerten durch  $P_{\rm S} = 5$  kW erreicht wurde. 
  • Nun kann die Sendeleistung um etwa  $12.1$  dB verringert werden:
$$ 10 \cdot {\rm lg} \hspace{0.1cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}}= -12.1\,{\rm dB} \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \frac{P_{\rm S}}{ 5 \;{\rm kW}} = 10^{-1.21}\approx 0.06\hspace{0.05cm}.$$
  • Das bedeutet:  Bei  $\text{System B}$  wird mit nur  $6\%$  der Sendeleistung von  $\text{System A}$  – also mit nur  $P_{\rm S} \hspace{0.15cm}\underline{ = 0.3 \ \rm kW}$ – die gleiche Systemqualität erzielt.



(5)  Wir bezeichnen mit  $V$  (steht für „Verbesserung”)  den größeren Sinken–Störabstand von  $\text{System B}$  gegenüber  $\text{System A}$ :

$$V = 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;B)} - 10 \cdot {\rm lg} \hspace{0.1cm}\rho_v \hspace{0.1cm}{\rm (System\;A)} = \left[6 \cdot \left(1 - {\rm e}^{-x+1} \right) -x -1 \right] \cdot 10\,{\rm dB}\hspace{0.05cm}.$$
  • Durch Nullsetzen der Ableitung ergibt sich derjenige  $x$–Wert, der zur maximalen Verbesserung führt:
$$ \frac{{\rm d}V}{{\rm d}x} = 6 \cdot {\rm e}^{-x+1} -1\Rightarrow \hspace{0.3cm} x = 1+ {\rm ln} \hspace{0.1cm}6 \hspace{0.3cm} \Rightarrow \hspace{0.3cm} 10 \cdot {\rm lg} \hspace{0.1cm}\xi = \hspace{0.15cm}\underline {27.9\,{\rm dB}}\hspace{0.05cm}.$$
  • Es ergibt sich also genau der in der Teilaufgabe  (4)  behandelte Fall mit  $10 · \lg ρ_υ = 50$  dB, während der Störabstand bei  $\text{System A}$  nur  $37.9$  dB beträgt. 
  • Die Verbesserung ist demnach  $12.1$  dB.