Aufgaben:Aufgabe 2.13: Quadratur-Amplitudenmodulation (QAM): Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 74: Zeile 74:
 
:$$\Rightarrow  \hspace{0.3cm}s(t)  =  \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) +  
 
:$$\Rightarrow  \hspace{0.3cm}s(t)  =  \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) +  
 
   \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
 
   \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
Richtig ist demnach der <u>zweite Lösungsvorschlag</u>.
+
*Richtig ist demnach der <u>zweite Lösungsvorschlag</u>.
  
  
'''(2)'''&nbsp; Mit $A_1 = A_2 = 2 \ \rm V$ und $f_1 = f_2 = 5\ \rm  kHz$ überlagern sich die erste und die dritte Cosinusschwingungen konstruktiv und die beiden anderen heben sich vollständig auf. Es ergibt sich somit das folgende einfache Ergebnis:
+
 
:$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm \mu s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
+
'''(2)'''&nbsp; Mit $A_1 = A_2 = 2 \ \rm V$ und $f_1 = f_2 = 5\ \rm  kHz$ überlagern sich die erste und die dritte Cosinusschwingungen konstruktiv und die beiden anderen heben sich vollständig auf.  
 +
*Es ergibt sich somit das folgende einfache Ergebnis:
 +
:$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm &micro; s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$
 +
 
  
  
 
'''(3)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:
 
'''(3)'''&nbsp; Richtig ist der <u>erste Lösungsvorschlag</u>:
*Bei phasensynchroner Demodulation ($Δϕ_T = 0$) erhält man für die Signale vor den Tiefpässen mit $r(t) = s(t)$ gemäß der Teilaufgabe '''(2)''':
+
*Bei phasensynchroner Demodulation&nbsp; $(Δϕ_T = 0)$&nbsp; erhält man für die Signale vor den Tiefpässen gemäß der Teilaufgabe&nbsp; '''(2)''':
 
:$$b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
 
:$$b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
 
:$$ b_2(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
 
:$$ b_2(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
Nach Eliminierung der jeweiligen $45\ \rm  kHz$–Anteile ergibt sich somit $v_1(t) = q_1(t)$ und $v_2(t) = q_2(t)$.
+
*Nach Eliminierung der jeweiligen&nbsp; $45\ \rm  kHz$–Anteile ergibt sich somit&nbsp; $v_1(t) = q_1(t)$&nbsp; und&nbsp; $v_2(t) = q_2(t)$.
 +
 
  
  
'''(4)'''&nbsp; Analog zur Teilaufgabe '''(3)''' gilt nun:
+
'''(4)'''&nbsp; Analog zur Teilaufgabe&nbsp; '''(3)'''&nbsp; gilt nun:
 
:$$ b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
:$$ b_1(t)  =  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
   2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
 
   2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
 
:$$b_2(t)=  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
:$$b_2(t)=  2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})=
 
   2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
 
   2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
*Die Sinkensignale $v_1(t)$ und $v_2(t)$ weisen bei dieser Konstellation gegenüber $q_1(t)$ und $q_2(t)$ Laufzeiten und damit Phasenverzerrungen auf.  
+
*Die Sinkensignale&nbsp; $v_1(t)$&nbsp; und&nbsp; $v_2(t)$&nbsp; weisen bei dieser Konstellation gegenüber&nbsp; $q_1(t)$&nbsp; und&nbsp; $q_2(t)$&nbsp; Laufzeiten und damit Phasenverzerrungen auf.  
 
*Diese gehören zur Klasse der linearen Verzerrungen &nbsp; &rArr; &nbsp; <u>Antwort 2</u>.
 
*Diese gehören zur Klasse der linearen Verzerrungen &nbsp; &rArr; &nbsp; <u>Antwort 2</u>.
 +
  
  
 
'''(5)'''&nbsp; Allgemein gilt für das Empfangssignal:
 
'''(5)'''&nbsp; Allgemein gilt für das Empfangssignal:
 
:$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
 
:$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Die Multiplikation mit den empfängerseitigen Trägersignalen $z_{1,\hspace{0.05cm}{\rm E}}(t)$ und $z_{2,\hspace{0.05cm}{\rm E}}(t)$ und die Bandbegrenzung führt zu den Sinkensignalen
+
Die Multiplikation mit den empfängerseitigen Trägersignalen&nbsp; $z_{1,\hspace{0.05cm}{\rm E}}(t)$&nbsp; und&nbsp; $z_{2,\hspace{0.05cm}{\rm E}}(t)$&nbsp; und Bandbegrenzung führt zu den Signalen
 
:$$v_1(t)  =  \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
 
:$$v_1(t)  =  \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
 
:$$ v_2(t)  =  \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
 
:$$ v_2(t)  =  \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$
 
Daraus ist zu ersehen:  
 
Daraus ist zu ersehen:  
*Bei einem Phasenversatz von $Δϕ_{\rm T}  = 30^\circ$ beinhaltet das Sinkensignal $v_1(t)$ nicht nur das um $\cos(30^\circ) = 0.866$ gedämpfte Signal $q_1(t)$, sondern auch die in $q_2(t)$ enthaltene Frequenz $f_2$.  
+
*Bei einem Phasenversatz von&nbsp; $Δϕ_{\rm T}  = 30^\circ$&nbsp; beinhaltet das Sinkensignal&nbsp; $v_1(t)$&nbsp; nicht nur das um&nbsp; $\cos(30^\circ) = 0.866$&nbsp; gedämpfte Signal&nbsp; $q_1(t)$, sondern auch die in&nbsp; $q_2(t)$&nbsp; enthaltene Frequenz&nbsp; $f_2$.  
*Diese ist mit dem Faktor $\sin(30^\circ) = 0.5$ gewichtet.  
+
*Diese ist mit dem Faktor&nbsp; $\sin(30^\circ) = 0.5$&nbsp; gewichtet.  
 
*Es liegen somit nichtlineare Verzerrungen vor  &nbsp; &rArr; &nbsp; <u>Antwort 3</u>.
 
*Es liegen somit nichtlineare Verzerrungen vor  &nbsp; &rArr; &nbsp; <u>Antwort 3</u>.
  

Version vom 18. März 2020, 16:37 Uhr

Betrachtetes Modell der  $\rm QAM$

Die durch die Grafik erklärte Quadratur–Amplitudenmodulation  $\rm (QAM)$  erlaubt unter gewissen Randbedingungen, die in dieser Aufgabe herausgefunden werden sollen, die gleichzeitige Übertragung von zwei Quellensignalen  $q_1(t)$  und  $q_2(t)$  über den gleichen Kanal.

In dieser Aufgabe gelte mit  $A_1 = A_2 = 2\ \rm V$:

$$q_1(t) = A_1 \cdot \cos(2 \pi \cdot f_{\rm 1} \cdot t),$$
$$q_2(t) = A_2 \cdot \sin(2 \pi \cdot f_{\rm 2} \cdot t)\hspace{0.05cm}.$$

Die vier in der Grafik eingezeichneten Trägersignale lauten mit  $ω_{\rm T} = 2π · 25\ \rm kHz$:

$$z_1(t) = \cos(\omega_{\rm T} \cdot t),$$
$$ z_2(t) = \sin(\omega_{\rm T} \cdot t),$$
$$ z_{1,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \cos(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T}),$$
$$ z_{2,\hspace{0.05cm}{\rm E}}(t) = 2 \cdot \sin(\omega_{\rm T} \cdot t + \Delta \phi_{\rm T})\hspace{0.05cm}.$$

Die beiden Tiefpässe  $\rm TP_1$  und  $\rm TP_2$  mit den Eingangssignalen  $b_1(t)$  und  $b_2(t)$  entfernen jeweils alle Frequenzanteile  $|f| > f_{\rm T}$.




Hinweise:

  • Anzumerken ist, dass hier die Trägersignale  $z_2(t)$  und  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  mit positivem Vorzeichen angesetzt wurden.
  • Oft – so auch im Theorieteil – werden diese Trägersignale als „Minus–Sinus” angegeben.
  • Gegeben sind folgende trigonometrischen Umformungen:
$$ \cos(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)+ \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \sin(\beta) = 1/2 \cdot \big[ \cos(\alpha - \beta)- \cos(\alpha + \beta) \big],$$
$$ \sin(\alpha) \cdot \cos(\beta) = 1/2 \cdot \big[ \sin(\alpha - \beta)+ \sin(\alpha + \beta) \big] \hspace{0.05cm}.$$


Fragebogen

1

Berechnen Sie das Sendesignal  $s(t)$  für den Fall  $f_1 ≠ f_2$.  Welche der folgenden Aussagen treffen zu?

$s(t)$  besteht aus zwei Cosinus– und zwei Sinusschwingungen.
$s(t)$  setzt sich aus vier Cosinusschwingungen zusammen.
$s(t)$  setzt sich aus vier Sinusschwingungen zusammen.

2

Wie lautet  $s(t)$  für  $f_1 = f_2 = 5 \ \rm kHz$.  Welcher Signalwert tritt bei  $t = 50 \ \rm µ s$  auf?

$s(t = 50 \ \rm µ s) \ = \ $

$\ \rm V$

3

Berechnen Sie für  $f_1 = f_2$  und  $Δϕ_{\rm T} = 0$  (kein Phasenversatz) die Sinkensignale  $v_1(t)$  und  $v_2(t)$.  Welche Aussagen treffen zu?

Es gilt  $v_1(t) = q_1(t)$  und  $v_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.

4

Berechnen Sie die Sinkensignale  $v_1(t)$  und  $v_2(t)$  für  $f_1 = f_2$  und den Phasenversatz  $Δϕ_{\rm T} = 30^\circ$.  Welche Aussagen treffen zu?

Es gilt  $v_1(t) = q_1(t)$  und  $v_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.

5

Welche der folgenden Aussagen treffen für  $f_1 ≠ f_2$  und  $Δϕ_{\rm T} ≠ 0$  (beliebiger Phasenversatz) zu?

Es gilt  $v_1(t) = q_1(t)$  und  $v_2(t) = q_2(t)$.
Es ergeben sich lineare Verzerrungen.
Es ergeben sich nichtlineare Verzerrungen.


Musterlösung

(1)  Mit den angegebenen trigonometrischen Umformungen erhält man:

$$s(t) = A_1 \cdot \cos(\omega_{\rm 1} \cdot t)\cdot \cos(\omega_{\rm T} \cdot t) + A_2 \cdot \sin(\omega_{\rm 2} \cdot t)\cdot \sin(\omega_{\rm T} \cdot t) $$
$$\Rightarrow \hspace{0.3cm}s(t) = \frac{A_1}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 1})\cdot t) + \frac{A_1}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 1})\cdot t) + \frac{A_2}{2}\cdot \cos((\omega_{\rm T} - \omega_{\rm 2})\cdot t) - \frac{A_2}{2}\cdot \cos((\omega_{\rm T} + \omega_{\rm 2})\cdot t)\hspace{0.05cm}.$$
  • Richtig ist demnach der zweite Lösungsvorschlag.


(2)  Mit $A_1 = A_2 = 2 \ \rm V$ und $f_1 = f_2 = 5\ \rm kHz$ überlagern sich die erste und die dritte Cosinusschwingungen konstruktiv und die beiden anderen heben sich vollständig auf.

  • Es ergibt sich somit das folgende einfache Ergebnis:
$$ s(t) = 2\,{\rm V} \cdot \cos(2 \pi \cdot 20\,{\rm kHz} \cdot t) \hspace{0.3cm}\Rightarrow \hspace{0.3cm} s(t = 50\,{\rm µ s}) \hspace{0.15cm}\underline {= 2\,{\rm V}} \hspace{0.05cm}.$$


(3)  Richtig ist der erste Lösungsvorschlag:

  • Bei phasensynchroner Demodulation  $(Δϕ_T = 0)$  erhält man für die Signale vor den Tiefpässen gemäß der Teilaufgabe  (2):
$$b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \cos(\omega_{\rm 45} \cdot t),$$
$$ b_2(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t) = 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t) + 2\,{\rm V} \cdot \sin(\omega_{\rm 45} \cdot t)\hspace{0.05cm}.$$
  • Nach Eliminierung der jeweiligen  $45\ \rm kHz$–Anteile ergibt sich somit  $v_1(t) = q_1(t)$  und  $v_2(t) = q_2(t)$.


(4)  Analog zur Teilaufgabe  (3)  gilt nun:

$$ b_1(t) = 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \cos(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \cos(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )},$$
$$b_2(t)= 2\,{\rm V} \cdot \cos(\omega_{\rm 20} \cdot t)\cdot 2 \cdot \sin(\omega_{\rm 25} \cdot t+ \Delta \phi_{\rm T})= 2\,{\rm V} \cdot \sin(\omega_{\rm 5} \cdot t + \Delta \phi_{\rm T}) + {(45 \,\rm kHz-Anteil )}\hspace{0.05cm}.$$
  • Die Sinkensignale  $v_1(t)$  und  $v_2(t)$  weisen bei dieser Konstellation gegenüber  $q_1(t)$  und  $q_2(t)$  Laufzeiten und damit Phasenverzerrungen auf.
  • Diese gehören zur Klasse der linearen Verzerrungen   ⇒   Antwort 2.


(5)  Allgemein gilt für das Empfangssignal:

$$r(t) = s(t) = q_1(t) \cdot \cos(\omega_{\rm T} \cdot t) + q_2(t) \cdot \sin(\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$

Die Multiplikation mit den empfängerseitigen Trägersignalen  $z_{1,\hspace{0.05cm}{\rm E}}(t)$  und  $z_{2,\hspace{0.05cm}{\rm E}}(t)$  und Bandbegrenzung führt zu den Signalen

$$v_1(t) = \cos(\Delta \phi_{\rm T}) \cdot q_1(t) - \sin(\Delta \phi_{\rm T}) \cdot q_2(t),$$
$$ v_2(t) = \sin(\Delta \phi_{\rm T}) \cdot q_1(t) + \cos(\Delta \phi_{\rm T}) \cdot q_2(t) \hspace{0.05cm}.$$

Daraus ist zu ersehen:

  • Bei einem Phasenversatz von  $Δϕ_{\rm T} = 30^\circ$  beinhaltet das Sinkensignal  $v_1(t)$  nicht nur das um  $\cos(30^\circ) = 0.866$  gedämpfte Signal  $q_1(t)$, sondern auch die in  $q_2(t)$  enthaltene Frequenz  $f_2$.
  • Diese ist mit dem Faktor  $\sin(30^\circ) = 0.5$  gewichtet.
  • Es liegen somit nichtlineare Verzerrungen vor   ⇒   Antwort 3.