Aufgaben:Aufgabe 1.4: 2S/3E-Kanalmodell: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
 
Zeile 16: Zeile 16:
  
  
 
+
Hinweise:  
 
 
 
 
''Hinweise:''
 
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
 
*Die Aufgabe gehört zum  Kapitel  [[Stochastische_Signaltheorie/Statistische_Abhängigkeit_und_Unabhängigkeit|Statistische Abhängigkeit und Unabhängigkeit]].
 
   
 
   
Zeile 64: Zeile 61:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''  Nur wenn das Symbol  $\rm L$  gesendet wurde, kann sich der Empfänger beim gegebenen Kanal für das Symbol  $\rm L$  entscheiden.  
+
'''(1)'''  Nur wenn das Symbol  $\rm L$  gesendet wurde,  kann sich der Empfänger beim gegebenen Kanal für das Symbol  $\rm L$  entscheiden.  
  
*Die Wahrscheinlichkeit für ein empfangenes  $\rm L$  ist allerdings um den Faktor  $0.7$  kleiner als für ein gesendetes. Daraus folgt:   
+
*Die Wahrscheinlichkeit für ein empfangenes  $\rm L$  ist allerdings um den Faktor  $0.7$  kleiner als für ein gesendetes.  Daraus folgt:   
 
:$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$
 
:$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$
  
  
  
'''(2)'''  Zum Ereignis  $E_{\rm H}$  kommt man sowohl von   $S_{\rm H}$  als auch von  $S_{\rm L}$  aus. Deshalb gilt:
+
'''(2)'''  Zum Ereignis  $E_{\rm H}$  kommt man sowohl von   $S_{\rm H}$  als auch von  $S_{\rm L}$  aus.  Deshalb gilt:
 
:$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { =  \rm 0.66}.$$
 
:$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr}  (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { =  \rm 0.66}.$$
  
  
  
'''(3)'''  Die Ereignisse  $E_{\rm H}$,  $E_{\rm L}$  und  $E_{\rm K}$  bilden zusammen ein vollständiges System. Daraus folgt:
+
'''(3)'''  Die Ereignisse  $E_{\rm H}$,  $E_{\rm L}$  und  $E_{\rm K}$  bilden zusammen ein vollständiges System.  Daraus folgt:
 
:$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr}  (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$
 
:$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr}  (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$
  
Zeile 86: Zeile 83:
  
  
'''(5)'''  Wenn das Symbol  $\rm L$  empfangen wurde, kann nur  $\rm L$  gesendet worden sein. Daraus folgt:  
+
'''(5)'''  Wenn das Symbol  $\rm L$  empfangen wurde,  kann nur  $\rm L$  gesendet worden sein.  Daraus folgt:  
 
:$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$
 
:$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$
  

Aktuelle Version vom 30. November 2021, 15:22 Uhr

$\rm 2S/3E$-Kanalmodell

Ein Sender gibt die binären Symbole  $\rm L$  $($Ereignis  $S_{\rm L})$  und  $\rm H$  $($Ereignis  $S_{\rm H})$  ab.

  • Bei guten Bedingungen entscheidet sich der Digitalempfänger ebenfalls nur für die Binärsymbole  $\rm L$  $($Ereignis  $E_{\rm L})$  oder  $\rm H$  $($Ereignis  $E_{\rm H})$.
  • Kann der Empfänger allerdings vermuten, dass bei der Übertragung ein Fehler aufgetreten ist, so trifft er keine Entscheidung  $($Ereignis  $E_{\rm K})$;  $\rm K$  steht hierbei für „Keine Entscheidung”).


Die Grafik zeigt ein einfaches Kanalmodell in Form von Übergangswahrscheinlichkeiten.  Es ist zu erkennen, dass ein gesendetes  $\rm L$  durchaus als Symbol  $\rm H$  empfangen werden kann.  Dagegen ist der Übergang von  $\rm H$  nach  $\rm L$  nicht möglich.

Die Symbolauftrittswahrscheinlichkeiten am Sender seien  ${\rm Pr}(S_{\rm L}) = 0.3$  und  ${\rm Pr}(S_{\rm H}) = 0.7$.



Hinweise:

  • Eine Zusammenfassung der theoretischen Grundlagen mit Beispielen bringt das Lernvideo 
Statistische Abhängigkeit und Unabhängigkeit.


Fragebogen

1

Wie groß ist die Wahrscheinlichkeit dafür,  dass sich der Empfänger für das Symbol  $\rm L$  entscheidet?

${\rm Pr}(E_{\rm L}) \ = \ $

2

Wie groß ist die Wahrscheinlichkeit dafür,  dass sich der Empfänger für das Symbol  $\rm H$  entscheidet?

${\rm Pr}(E_{\rm H}) \ = \ $

3

Wie groß ist die Wahrscheinlichkeit dafür,  dass der Empfänger keine Entscheidung trifft?

${\rm Pr}(E_{\rm K}) \ = \ $

4

Mit welcher Wahrscheinlichkeit entscheidet der Empfänger falsch?

$\text{Pr(falsche Entscheidung)} \ = \ $

5

Wie groß ist die Wahrscheinlichkeit,  dass tatsächlich das Symbol  $\rm L$  gesendet wurde,  wenn sich der Empfänger für das Symbol  $\rm L$  entschieden hat?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm L} ) \ = \ $

6

Wie groß ist die Wahrscheinlichkeit,  dass das Symbol  $\rm L$  gesendet wurde,  wenn der Empfänger keine Entscheidung trifft?

${\rm Pr}(S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}E_{\rm K} ) \ =\ $


Musterlösung

(1)  Nur wenn das Symbol  $\rm L$  gesendet wurde,  kann sich der Empfänger beim gegebenen Kanal für das Symbol  $\rm L$  entscheiden.

  • Die Wahrscheinlichkeit für ein empfangenes  $\rm L$  ist allerdings um den Faktor  $0.7$  kleiner als für ein gesendetes.  Daraus folgt:
$${\rm Pr} (E_{\rm L}) = {\rm Pr}(S_{\rm L}) \cdot {\rm Pr} (E_{\rm L}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm L}) = 0.3 \cdot 0.7 \hspace{0.15cm}\underline {= \rm 0.21}.$$


(2)  Zum Ereignis  $E_{\rm H}$  kommt man sowohl von  $S_{\rm H}$  als auch von  $S_{\rm L}$  aus.  Deshalb gilt:

$${\rm Pr} (E_{\rm H}) = {\rm Pr} (S_{\rm H}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm}S_{\rm H}) + {\rm Pr} (S_{\rm L}) \cdot {\rm Pr} (E_{\rm H}\hspace{0.05cm}|\hspace{0.05cm} S_{\rm L})= \rm 0.7 \cdot 0.9 + 0.3 \cdot 0.1\hspace{0.15cm}\underline { = \rm 0.66}.$$


(3)  Die Ereignisse  $E_{\rm H}$,  $E_{\rm L}$  und  $E_{\rm K}$  bilden zusammen ein vollständiges System.  Daraus folgt:

$${\rm Pr} (E_{\rm K}) = 1 - {\rm Pr} (E_{\rm L}) - {\rm Pr} (E_{\rm H}) \hspace{0.15cm}\underline {= \rm 0.13}.$$


(4)  Eine falsche Entscheidung kann man mengentheoretisch wie folgt charakterisieren:

$${\rm Pr} \text{(falsche Entscheidung)} = {\rm Pr} \big [(S_{\rm L} \cap E_{\rm H}) \cup (S_{\rm H} \cap E_{\rm L})\big ] = \rm 0.3 \cdot 0.1 + 0.7\cdot 0 \hspace{0.15cm}\underline {= \rm 0.03}.$$


(5)  Wenn das Symbol  $\rm L$  empfangen wurde,  kann nur  $\rm L$  gesendet worden sein.  Daraus folgt:

$${\rm Pr} (S_{\rm L} \hspace{0.05cm}|\hspace{0.05cm} E_{\rm L}) \hspace{0.15cm}\underline {= \rm 1}.$$


(6)  Zur Lösung dieser Aufgabe eignet sich zum Beispiel der Satz von Bayes:

$${\rm Pr} (S_{\rm L}\hspace{0.05cm}|\hspace{0.05cm} E_{\rm K}) =\frac{ {\rm Pr} ( E_{\rm K} \hspace{0.05cm}|\hspace{0.05cm} S_{\rm L}) \cdot {\rm Pr} (S_{\rm L})}{{\rm Pr} (E_{\rm K})} =\frac{ \rm 0.2 \cdot 0.3}{\rm 0.13} = \frac{\rm 6}{\rm 13}\hspace{0.15cm}\underline { \approx \rm 0.462}.$$