Applets:Das Gram-Schmidt-Verfahren: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 15: Zeile 15:
 
Das Applet zeigt alle Grafiken,  die zum Verständnis des Gram–Schmidt–Verfahrens erforderlich sind,  und als jeweiliges Ergebnis
 
Das Applet zeigt alle Grafiken,  die zum Verständnis des Gram–Schmidt–Verfahrens erforderlich sind,  und als jeweiliges Ergebnis
 
* die 2D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=2$,
 
* die 2D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=2$,
 +
 
* die 3D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=3$.
 
* die 3D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=3$.
  
Zeile 30: Zeile 31:
 
The applet shows all the graphics,  necessary to understand the Gram–Schmidt process,  and as the respective result.
 
The applet shows all the graphics,  necessary to understand the Gram–Schmidt process,  and as the respective result.
 
* the two-dimensional representation of the  $M$  vectorial representatives, if  $N=2$,
 
* the two-dimensional representation of the  $M$  vectorial representatives, if  $N=2$,
 +
 
* the three-dimensional  representation of the  $M$  vectorial representatives, if  $N=3$.
 
* the three-dimensional  representation of the  $M$  vectorial representatives, if  $N=3$.
  
Zeile 58: Zeile 60:
 
  \hspace{0.05cm}.$$}}<br>
 
  \hspace{0.05cm}.$$}}<br>
  
Der Parameter&nbsp; $N$&nbsp; gibt dabei an, wieviele Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; benötigt werden, um die&nbsp; $M$&nbsp; möglichen Sendesignale darzustellen.&nbsp; Mit anderen Worten: &nbsp; $N$&nbsp; ist die ''Dimension des Vektorraums'', der von den&nbsp; $M$&nbsp; Signalen aufgespannt wird.&nbsp; Dabei gilt:
+
Der Parameter&nbsp; $N$&nbsp; gibt dabei an, wieviele Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; benötigt werden, um die&nbsp; $M$&nbsp; möglichen Sendesignale darzustellen.&nbsp; Mit anderen Worten: &nbsp; $N$&nbsp; ist die&nbsp; &raquo;Dimension des Vektorraums&laquo;,&nbsp; der von den&nbsp; $M$&nbsp; Signalen aufgespannt wird.&nbsp; Dabei gilt:
 
*Ist&nbsp; $N = M$, so sind alle Sendesignale zueinander orthogonal.&nbsp; Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien&nbsp; $E_i = \ <\hspace{-0.01cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.01cm}>$&nbsp; können durchaus ungleich Eins sein.<br>
 
*Ist&nbsp; $N = M$, so sind alle Sendesignale zueinander orthogonal.&nbsp; Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien&nbsp; $E_i = \ <\hspace{-0.01cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.01cm}>$&nbsp; können durchaus ungleich Eins sein.<br>
 +
 
*Der Fall&nbsp; $N < M$&nbsp; ergibt sich, wenn mindestens ein Signal&nbsp; $s_i(t)$&nbsp; als Linearkombination von Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; dargestellt werden kann, die sich bereits aus anderen Signalen&nbsp; $s_j(t) \ne s_i(t)$&nbsp; ergeben haben.<br>
 
*Der Fall&nbsp; $N < M$&nbsp; ergibt sich, wenn mindestens ein Signal&nbsp; $s_i(t)$&nbsp; als Linearkombination von Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; dargestellt werden kann, die sich bereits aus anderen Signalen&nbsp; $s_j(t) \ne s_i(t)$&nbsp; ergeben haben.<br>
  
Zeile 73: Zeile 76:
  
 
*Die Basisfunktionen&nbsp; $\varphi_1(t)$&nbsp; und &nbsp;$\varphi_2(t)$&nbsp; sind jeweils formgleich mit&nbsp; $s_1(t)$&nbsp;  bzw.&nbsp;  $s_2(t)$.  
 
*Die Basisfunktionen&nbsp; $\varphi_1(t)$&nbsp; und &nbsp;$\varphi_2(t)$&nbsp; sind jeweils formgleich mit&nbsp; $s_1(t)$&nbsp;  bzw.&nbsp;  $s_2(t)$.  
 +
 
*Beide Signale besitzen jeweils die Energie &bdquo;Eins&rdquo;:
 
*Beide Signale besitzen jeweils die Energie &bdquo;Eins&rdquo;:
  
Zeile 129: Zeile 133:
  
 
Diese Prozedur wird solange fortgesetzt, bis alle&nbsp; $M$&nbsp; Signale berücksichtigt wurden.  
 
Diese Prozedur wird solange fortgesetzt, bis alle&nbsp; $M$&nbsp; Signale berücksichtigt wurden.  
*Danach hat man alle&nbsp; $N \le M$&nbsp; orthonormalen Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; gefunden.  
+
*Danach hat man alle&nbsp; $N \le M$&nbsp; orthonormalen Basisfunktionen&nbsp; $\varphi_j(t)$&nbsp; gefunden.
 +
 
*Der Sonderfall&nbsp; $N = M$&nbsp; ergibt sich nur dann, wenn alle&nbsp; $M$&nbsp; Signale linear voneinander unabhängig sind.<br>
 
*Der Sonderfall&nbsp; $N = M$&nbsp; ergibt sich nur dann, wenn alle&nbsp; $M$&nbsp; Signale linear voneinander unabhängig sind.<br>
  
Zeile 355: Zeile 360:
 
<br clear=all>
 
<br clear=all>
 
==Über die Autoren==
 
==Über die Autoren==
Dieses interaktive Berechnungstool  wurde am&nbsp; [http://www.lnt.ei.tum.de/startseite Lehrstuhl für Nachrichtentechnik]&nbsp; der&nbsp; [https://www.tum.de/ Technischen Universität München]&nbsp; konzipiert und realisiert.  
+
Dieses interaktive Berechnungstool  wurde am&nbsp; [https://www.ce.cit.tum.de/lnt/startseite/ &raquo;Lehrstuhl für Nachrichtentechnik&laquo;]&nbsp; der&nbsp; [https://www.tum.de/ &raquo;Technischen Universität München&laquo;]&nbsp; konzipiert und realisiert.  
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Martin_V.C3.B6lkl_.28Diplomarbeit_LB_2010.29|Martin Völkl]]&nbsp; im Rahmen seiner Diplomarbeit mit &bdquo;FlashMX&ndash;Actionscript&rdquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|Günter Söder]]).  
+
*Die erste Version wurde 2008 von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Martin_V.C3.B6lkl_.28Diplomarbeit_LB_2010.29|&raquo;Martin Völkl&laquo;]]&nbsp; im Rahmen seiner Diplomarbeit mit &raquo;FlashMX&ndash;Actionscript&laquo; erstellt (Betreuer:&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Mitarbeiter_und_Dozenten#Prof._Dr.-Ing._habil._G.C3.BCnter_S.C3.B6der_.28am_LNT_seit_1974.29|&raquo;Günter Söder&laquo;]]).
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|Carolin Mirschina]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|Tasnád Kernetzky]]).
+
 +
* 2020 wurde das Programm  von&nbsp; [[Biografien_und_Bibliografien/An_LNTwww_beteiligte_Studierende#Carolin_Mirschina_.28Ingenieurspraxis_Math_2019.2C_danach_Werkstudentin.29|&raquo;Carolin Mirschina&laquo;]]&nbsp; im Rahmen einer Werkstudententätigkeit auf  &bdquo;HTML5&rdquo; umgesetzt und neu gestaltet (Betreuer:&nbsp; [[Biografien_und_Bibliografien/Beteiligte_der_Professur_Leitungsgebundene_%C3%9Cbertragungstechnik#Tasn.C3.A1d_Kernetzky.2C_M.Sc._.28bei_L.C3.9CT_seit_2014.29|&raquo;Tasnád Kernetzky&laquo;]]).
  
  
Die Umsetzung dieses Applets auf HTML 5 wurde durch das Programm&nbsp; [https://www.exzellenz.tum.de/startseite/ EXIni]&nbsp; (Exzellenzinitiative)&nbsp;  der  Technischen Universität München gefördert.&nbsp; Wir bedanken uns.
+
Die Umsetzung dieses Applets auf HTML 5 wurde durch das Programm&nbsp; [https://www.exzellenz.tum.de/startseite/ &raquo;EXIni&laquo;]&nbsp; (Exzellenzinitiative)&nbsp;  der  Technischen Universität München gefördert.&nbsp; Wir bedanken uns.
  
  

Version vom 17. April 2023, 10:38 Uhr

Applet in neuem Tab öffnen


Programmbeschreibung


Das Applet verdeutlicht das  »Gram–Schmidt–Verfahren«.  Dieses ermöglicht,  eine Menge  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$  energiebegrenzter Signale mit Hilfe von   $N \le M$  orthonormalen Basisfunktionen   $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$  in folgender Form darzustellen:

$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$

Der vektorielle Repräsentant der Musterfunktion  $s_1(t)$  lautet dann:

$$\mathbf{s}_i = \big( s_{i1}\hspace{0.05cm}, \hspace{0.3cm}s_{i2}\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm},\hspace{0.05cm} s_{iN} \big ).$$

Das Applet zeigt alle Grafiken,  die zum Verständnis des Gram–Schmidt–Verfahrens erforderlich sind,  und als jeweiliges Ergebnis

  • die 2D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=2$,
  • die 3D–Darstellung der  $M$  vektoriellen Repräsentanten, falls  $N=3$.

English Description


This applet illustrates the  »Gram–Schmidt process«.  This allows to represent a set  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$  of energy-limited signals in the following form,  using   $N \le M$  orthonormal basis functions   $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$:

$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$

The vectorial representative of the pattern function  $s_1(t)$  is then:

$$\mathbf{s}_i = \big( s_{i1}\hspace{0.05cm}, \hspace{0.3cm}s_{i2}\hspace{0.05cm},\hspace{0.05cm} \text{...}\hspace{0.05cm},\hspace{0.05cm} s_{iN} \big ).$$

The applet shows all the graphics,  necessary to understand the Gram–Schmidt process,  and as the respective result.

  • the two-dimensional representation of the  $M$  vectorial representatives, if  $N=2$,
  • the three-dimensional representation of the  $M$  vectorial representatives, if  $N=3$.


Theoretischer Hintergrund

Signaldarstellung mit orthonormalen Basisfunktionen

Wir gehen von einer Menge  $\{s_i(t)\}$  möglicher Sendesignale aus, die den möglichen Nachrichten  $m_i$  eineindeutig zugeordnet sind. Mit  $i = 1$, ... , $M$  gelte:

$$m \in \{m_i \}, \hspace{0.2cm} s(t) \in \{s_i(t) \}\hspace{-0.1cm}: \hspace{0.3cm} m = m_i \hspace{0.1cm} \Leftrightarrow \hspace{0.1cm} s(t) = s_i(t) \hspace{0.05cm}.$$

Für das Folgende setzen wir weiter voraus, dass die  $M$ Signale  $s_i(t)$  energiebegrenzt  sind, was meist gleichzeitig bedeutet, dass sie nur von endlicher Dauer sind.

$\text{Satz:}$  Eine jede Menge  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$  energiebegrenzter Signale lässt sich in  $N \le M$  orthonormale Basisfunktionen  $\varphi_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , \varphi_N(t)$  entwickeln.  Es gilt:

$$s_i(t) = \sum\limits_{j = 1}^{N}s_{ij} \cdot \varphi_j(t) , \hspace{0.3cm}i = 1,\hspace{0.05cm} \text{...}\hspace{0.1cm} , M, \hspace{0.3cm}j = 1,\hspace{0.05cm} \text{...} \hspace{0.1cm}, N \hspace{0.05cm}.$$

Jeweils zwei Basisfunktionen  $\varphi_j(t)$  und  $\varphi_k(t)$  müssen orthonormal zueinander sein, das heißt, dass gelten muss  $(\delta_{jk}$  nennt man das Kronecker–Symbol$)$:

$$<\hspace{-0.1cm}\varphi_j(t), \hspace{0.05cm}\varphi_k(t) \hspace{-0.1cm}> = \int_{-\infty}^{+\infty}\varphi_j(t) \cdot \varphi_k(t)\,d \it t = {\rm \delta}_{jk} = \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.4cm}j = k\hspace{0.1cm} \\ {\rm falls}\hspace{0.4cm} j \ne k \hspace{0.1cm}\\ \end{array} \hspace{0.05cm}.$$


Der Parameter  $N$  gibt dabei an, wieviele Basisfunktionen  $\varphi_j(t)$  benötigt werden, um die  $M$  möglichen Sendesignale darzustellen.  Mit anderen Worten:   $N$  ist die  »Dimension des Vektorraums«,  der von den  $M$  Signalen aufgespannt wird.  Dabei gilt:

  • Ist  $N = M$, so sind alle Sendesignale zueinander orthogonal.  Sie sind nicht notwendigerweise orthonormal, das heißt, die Energien  $E_i = \ <\hspace{-0.01cm}s_i(t), \hspace{0.05cm}s_i(t) \hspace{-0.01cm}>$  können durchaus ungleich Eins sein.
  • Der Fall  $N < M$  ergibt sich, wenn mindestens ein Signal  $s_i(t)$  als Linearkombination von Basisfunktionen  $\varphi_j(t)$  dargestellt werden kann, die sich bereits aus anderen Signalen  $s_j(t) \ne s_i(t)$  ergeben haben.


Darstellung der drei Sendesignale durch zwei Basisfunktionen

$\text{Beispiel 1:}$  Wir betrachten  $M = 3$  energiebegrenzte Signale gemäß der Grafik.

Man erkennt sofort:

  • Die Signale  $s_1(t)$  und  $s_2(t)$  sind zueinander orthogonal.
  • Die Energien sind  $E_1 = A^2 \cdot T = E$  und  $E_2 = (A/2)^2 \cdot T = E/4$.
  • Die Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$  sind jeweils formgleich mit  $s_1(t)$  bzw.  $s_2(t)$.
  • Beide Signale besitzen jeweils die Energie „Eins”:
$$\varphi_1(t)=\frac{s_1(t)}{\sqrt{E_1} } = \frac{s_1(t)}{\sqrt{A^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_1(t)}{A}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_1(t) = s_{11} \cdot \varphi_1(t)\hspace{0.05cm},\hspace{0.1cm}s_{11} = \sqrt{E}\hspace{0.05cm},$$
$$\varphi_2(t) =\frac{s_2(t)}{\sqrt{E_2} } = \frac{s_2(t)}{\sqrt{(A/2)^2 \cdot T} } = \frac{1}{\sqrt{ T} } \cdot \frac{s_2(t)}{A/2}\hspace{0.05cm}$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm}s_2(t) = s_{21} \cdot \varphi_2(t)\hspace{0.05cm},\hspace{0.1cm}s_{21} = {\sqrt{E} }/{2}\hspace{0.05cm}.$$
  • Das Signal  $s_3(t)$  kann durch die vorher bestimmten Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$  ausgedrückt werden:
$$s_3(t) =s_{31} \cdot \varphi_1(t) + s_{32} \cdot \varphi_2(t)\hspace{0.05cm},$$
$$\hspace{0.5cm}\Rightarrow \hspace{0.1cm} s_{31} = {A}/{2} \cdot \sqrt {T}= {\sqrt{E} }/{2}\hspace{0.05cm}, \hspace{0.2cm}s_{32} = - A \cdot \sqrt {T} = -\sqrt{E} \hspace{0.05cm}.$$

Trotz  $M=3$  gilt also im vorliegenen Fall nur  $N=2$.

Im rechten unteren Bild sind die Signale in einer 2D–Darstellung mit den Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$  als Achsen dargestellt, wobei  $E = A^2 \cdot T$  gilt und der Zusammenhang zu den anderen Grafiken durch die Farbgebung zu erkennen ist.

Die vektoriellen Repräsentanten der Signale  $s_1(t)$,  $s_2(t)$  und  $s_3(t)$  in diesem zweidimensionellen Vektorraum lassen sich daraus wie folgt ablesen:

$$\mathbf{s}_1 = (\sqrt{ E}, \hspace{0.1cm}0), \hspace{0.5cm} \mathbf{s}_2 = (0, \hspace{0.1cm}\sqrt{ E}/2), \hspace{0.5cm} \mathbf{s}_3 = (\sqrt{ E}/2,\hspace{0.1cm}-\sqrt{ E} ) \hspace{0.05cm}.$$


Das Verfahren nach Gram-Schmidt

Im letzten  $\text{Beispiel}$  war die Bestimmung der beiden orthonormalen Basisfunktionen  $\varphi_1(t)$  und  $\varphi_2(t)$  sehr einfach, da diese formgleich mit  $s_1(t)$  bzw.  $s_2(t)$  waren. Das  Gram–Schmidt–Verfahren  findet die Basisfunktionen  $\varphi_1(t)$, ... , $\varphi_N(t)$  für beliebig vorgebbare Signale  $s_1(t)$, ... , $s_M(t)$, und zwar wie folgt:

  • Die erste Basisfunktion  $\varphi_1(t)$  ist stets formgleich mit  $s_1(t)$. Es gilt:
$$\varphi_1(t) = \frac{s_1(t)}{\sqrt{E_1}} = \frac{s_1(t)}{|| s_1(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_1(t) || = 1, \hspace{0.2cm}s_{11} =|| s_1(t)||,\hspace{0.2cm}s_{1j} = 0 \hspace{0.2cm}{\rm f{\rm \ddot{u}r }}\hspace{0.2cm} j \ge 2 \hspace{0.05cm}.$$

$\text{Hinweise zur Nomenklatur:}$ 

(1)  Ausgehend von zwei reellen und energiebegrenzten Zeitfunktionen  $x(t)$  und  $y(t)$  erhält man für das  innere Produkt allgemein:

$$<\hspace{-0.01cm}x(t), \hspace{0.05cm}y(t) \hspace{-0.01cm}> \hspace{0.15cm}= \int_{-\infty}^{+\infty}x(t) \cdot y(t)\,d \it t \hspace{0.05cm}.$$

(2)  Daraus ergibt sich die  Euklidische Norm  der Zeitfunktion $s_1(t)$:

$$\vert \vert s_1(t) \vert \vert = \sqrt{<\hspace{-0.01cm}s_1(t), \hspace{0.15cm}s_1(t) \hspace{-0.01cm}>} $$


Es wird nun angenommen, dass aus den Signalen  $s_1(t)$, ... , $s_{k-1}(t)$  bereits die Basisfunktionen  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  berechnet wurden  $(n \le k)$.

  • Dann berechnen wir mittels der nächsten Funktion  $s_k(t)$  die Hilfsfunktion
$$\theta_k(t) = s_k(t) - \sum\limits_{j = 1}^{n-1}s_{kj} \cdot \varphi_j(t) \hspace{0.4cm}{\rm mit}\hspace{0.4cm} s_{kj} = \hspace{0.01cm} < \hspace{-0.1cm} s_k(t), \hspace{0.05cm}\varphi_j(t) \hspace{-0.01cm} >, \hspace{0.2cm} j = 1, \hspace{0.05cm} \text{...}\hspace{0.05cm}, n-1\hspace{0.05cm}.$$
  • Hat diese Hilfsfunktion die Norm   $||\theta_k(t)|| = 0$, so liefert  $s_k(t)$  keine neue Basisfunktion.  Vielmehr lässt sich dann  $s_k(t)$  durch die  $n-1$  bereits vorher gefundenen Basisfunktionen  $\varphi_1(t)$, ... , $\varphi_{n-1}(t)$  ausdrücken:
$$s_k(t) = \sum\limits_{j = 1}^{n-1}s_{kj}\cdot \varphi_j(t) \hspace{0.05cm}.$$
  • Eine neue Basisfunktion  (nämlich die  $n$–te)  ergibt sich nur für den Fall  $||\theta_k(t)|| \ne 0$:
$$\varphi_n(t) = \frac{\theta_k(t)}{|| \theta_k(t)||} \hspace{0.3cm}\Rightarrow \hspace{0.3cm} || \varphi_n(t) || = 1\hspace{0.05cm}.$$

Diese Prozedur wird solange fortgesetzt, bis alle  $M$  Signale berücksichtigt wurden.

  • Danach hat man alle  $N \le M$  orthonormalen Basisfunktionen  $\varphi_j(t)$  gefunden.
  • Der Sonderfall  $N = M$  ergibt sich nur dann, wenn alle  $M$  Signale linear voneinander unabhängig sind.


$\text{Beispiel 2:}$  Wir betrachten die  $M = 4$  energiebegrenzten Signale  $s_1(t)$, ... , $s_4(t)$  entsprechend der Grafik. Zur Vereinfachung der Berechnungen sind hier sowohl die Amplituden als auch die Zeit normiert.

Zum Gram-Schmidt-Verfahren

Man erkennt aus diesen Skizzen:

  • Die Basisfunktion  $\varphi_1(t)$  ist formgleich mit  $s_1(t)$.  Wegen  $E_1 = \vert \vert s_1(t) \vert \vert ^2 = 3 \cdot 0.5^2 = 0.75$  ergibt sich  $s_{11} = \vert \vert s_1(t) \vert \vert = 0.866$.  $\varphi_1(t)$  selbst besitzt abschnittsweise die Werte  $\pm 0.5/0.866 = \pm0.577$.
  • Zur Berechnung der Hilfsfunktion  $\theta_2(t)$  berechnen wir
$$s_{21} = \hspace{0.1cm} < \hspace{-0.01cm} s_2(t), \hspace{0.05cm}\varphi_1(t) \hspace{-0.1cm} > \hspace{0.01cm} = 0 \cdot (+0.577) + 1 \cdot (-0.577)+ 0 \cdot (-0.577)= -0.577$$
$$ \Rightarrow \hspace{0.3cm}\theta_2(t) = s_2(t) - s_{21} \cdot \varphi_1(t) = (0.333, \hspace{0.15cm} 0.667, \hspace{0.15cm} -0.333) \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\vert \vert \theta_2(t) \vert \vert^2 = (1/3)^2 + (2/3)^2 + (-1/3)^2 = 0.667$$
$$ \Rightarrow \hspace{0.3cm} s_{22} = \sqrt{0.667} = 0.816,\hspace{0.3cm} \varphi_2(t) = \theta_2(t)/s_{22} = (0.408, \hspace{0.15cm} 0.816, \hspace{0.15cm} -0.408)\hspace{0.05cm}. $$
  • Die inneren Produkte zwischen  $s_1(t)$  mit  $\varphi_1(t)$  bzw.  $\varphi_2(t)$  liefern folgende Ergebnisse:
$$s_{31} \hspace{0.01cm} = \hspace{0.1cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_1(t) \hspace{-0.01cm} > \hspace{0.1cm} = 0.5 \cdot (+0.577) + 0.5 \cdot (-0.577)- 0.5 \cdot (-0.577)= 0.289,$$
$$s_{32} \hspace{0.1cm} = \hspace{0.01cm} < \hspace{-0.1cm} s_3(t), \hspace{0.07cm}\varphi_2(t) \hspace{-0.01cm} > \hspace{0.1cm} = 0.5 \cdot (+0.408) + 0.5 \cdot (+0.816)- 0.5 \cdot (-0.408)= 0.816$$
$$\Rightarrow \hspace{0.3cm}\theta_3(t) = s_3(t) - 0.289 \cdot \varphi_1(t)- 0.816 \cdot \varphi_2(t) = 0\hspace{0.05cm}.$$

Das bedeutet:   Die grüne Funktion  $s_3(t)$  liefert keine neue Basisfunktion  $\varphi_3(t)$, im Gegensatz zur Funktion  $s_4(t)$. Die numerischen Ergebnisse hierfür können der Grafik entnommen werden.


Die verschiedenen Rubriken bei der Auswahl der Programmparameter

Das Programm bietet insgesamt  $4 \cdot 6 = 24$  Möglichkeiten zur Einstellung der jeweiligen Menge  $\{s_i(t)\}$  möglicher Sendesignale.  Diese  $24$  Parametersätze sind in vier Rubriken eingeteilt. Die vier Rubriküberschriften treffen den Sachverhalt nicht hundertprozentig und sind deshalb in Hochkommata gesetzt:

(1)  Rubrik  „Basisband”   ⇒   gültig für die Einstellungen  $\rm (A)$  ...  $\rm (F)$:

Signalform bei „Basisband”
  • Jedes Mustersignal  $s_i(t)$  besteht aus drei Rechteckfunktionen unterschiedlicher Höhen und jeweiliger Dauer  $T$. 
  • Die einzelnen Rechteckhöhen sind Vielfache von  $\pm 0.25$  und die gesamte Signaldauer ergibt  $3T$.
  • Mit dem seitlichen Slider kann man das Signal  $s_i(t)$  um Vielfache von  $\pm 0.25$  nach oben und unten verschieben.
  • Solche Signale treten zum Beispiel bei der binären oder mehrstufigen  Basisbandübertragung  auf.
  • Im  $\text{Beispiel 2}$  des hier angegebenen Links erkennt man zum Beispiel die grafischen Darstellungen
  • eines binären Signals  $q(t)$,
  • eines ternären Signals  $s_3(t)$,
  • eines quaternären Signals  $s_4(t)$.


(2)  Rubrik  M–ASK / BPSK”  ⇒   gültig für die Einstellungen  $\rm (G)$  ...  $\rm (L)$:

Signalform bei „M–ASK / BPSK”
  • Die Mustersignale  $s_i(t)$  haben ebenfalls die Dauer  $3T$  und sind ähnlich aufgebaut wie bei der Rubrik  (1).
  • Im Unterschied zu  (1)  wird jede Rechteckfunktion  $($Dauer $T)$  durch eine Periode einer Sinusfunktionen ersetzt.
  • Der angegebene Zahlenwert gibt hier die Amplitude des sinusförmigen Teilstücks an.
  • Bei negativem Vorzeichen wird aus dem „Sinus” die Funktion „Minus–Sinus”.
  • Mit dem seitlichen Slider kann man die Amplitude von  $s_i(t)$  um Vielfache von  $\pm 0.25$  vergrößern oder verkleinern.
  • Solche Signale können zum Beispiel bei der M–ASK  (mehrstufiges Amplitude Shift Keying)  auftreten, ebenso bei  BPSK (Binary Phase Shift Keying).


(3)  Rubrik  „Nur eine Frequenz”  ⇒   gültig für die Einstellungen  $\rm (M)$  ...  $\rm (R)$:

Signalform bei „Nur eine Frequenz”
  • Alle Mustersignale  $s_i(t)$  haben die Dauer  $T$  und sind jeweils Harmonische Schwingungen der Form
$$s_i(t) = A_i \cdot \cos(2\pi \cdot f_k \cdot t + \phi_i)\hspace{0.3cm}\text{mit}\hspace{0.3cm}f_k=K/T.$$
  • Die Eigenschaft „Nur eine Frequenz” bezieht sich auf die einzelnen Mustersignale  $s_i(t)$  und auf den gesamten Set.
  • Der Parameter  $K$  gibt die Anzahl der Schwingungen innerhalb der Zeit  $T$  an und gilt für alle Mustersignale.
  • Die Grafik gilt für:  $A_i=0.75, \hspace{0.3cm}f_k= 4/T \hspace{0.3cm}\Rightarrow\hspace{0.3cm}K=4, \hspace{0.3cm}\phi_i=- 90^\circ$   ⇒   sinusförmiger Verlauf.
  • Mit dem Slider lässt sich die Phase von  $s_i(t)$  um Vielfache von  $\pm 22.5^\circ$  in beide Richtungen variieren.
  • Solche Harmonische haben für alle (analogen und digitalen) Nachrichtensysteme große Bedeutung.


(4)  Rubrik  „Mehrere Frequenzen”  ⇒   gültig für die Einstellungen  $\rm (S)$  ...  $\rm (X)$:

  • Es gelten ähnliche Voraussetzungen wie für die „Rubrik 3”, es sind aber nun stets mehrere Frequenzen beteiligt.
  • Die Eigenschaft „Mehrere Frequenzen” bezieht sich auf einzelne Mustersignale  $s_i(t)$  oder auch auf den gesamten Set  $\{s_i(t)\}$.
  • Möglich sind somit auch Mustersignale der folgenden Form  $($mit  $k=0$  ⇒   $f=f_0 = k/T = 0$  ⇒   Gleichsignal$)$:
$$s_i(t) = 1 \cdot \cos(2\pi \cdot f_0 \cdot t) - 0.5 \cdot \cos(2\pi \cdot f_2 \cdot t)-0.5 \cdot \cos(2\pi \cdot f_3 \cdot t).$$
  • Der Parameter  $k$  muss auch nicht ganzzahlig sein. Beispielsweise kennzeichnet  $k= 4.5$  viereinhalb Schwingunen Schwingungen innerhalb der Zeitdauer  $T$.
  • Mit dem Slider können die Frequenzkenngrößen  $k$  um Vielfache von  $0.25$  vergrößert oder verkleinert werden.




Versuchsdurchführung


Gram 13 verion1.png
  • Wählen Sie zunächst die Nummer  (1, ...)  der zu bearbeitenden Aufgabe.
  • Eine Aufgabenbeschreibung wird angezeigt. Die Parameterwerte sind angepasst.
  • Lösung nach Drücken von „Musterlösung”.


Die Nummer 0 entspricht einem „Reset”:

  • Gleiche Einstellung wie beim Programmstart.
  • Ausgabe eines „Reset–Textes” mit weiteren Erläuterungen zum Applet.


(1)  Es gilt die Einstellung  $\rm A$.  Interpretieren Sie die ausgegebenen Grafiken.  Wählen Sie hierfür „Einzelschritt”.

  •  Einstellung  $\rm A$  beschreibt das $\text{Beispiel 2}$  im Theorieteil. Die Basisfunktion  $\varphi_1(t)$  ist identisch mit dem Signal  $s_1(t)$,  aber mit Signalenergie  $E=1$.
  •  Es gibt hier nur  $N=3$  Basisfunktionen, da die Hilfsfunktion  $\theta_3(t)$  identisch Null ist.
  •  Die vektoriellen Repräsentanten der Signale  $s_1(t)$,  ... , $s_4(t)$  können im 3D–Vektorraum abgelesen werden;  Beispiel:  $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$.

(2)  Interpretieren Sie die ausgegebenen Grafiken für die Einstellung  $\rm B$.  Wählen Sie hierfür und bei den weiteren Aufgaben „Gesamtdarstellung”.

  •  Auch hier gibt es  $N=3$  Basisfunktionen.  Bei Änderung auf  $s_4 = (-1, \hspace{0.15cm} -1, \hspace{0.25cm} 0)$  nur mehr  $N=2$.

(3)  Bei der Einstellung  $\rm C$  ist die Reihenfolge der Signale gegenüber  $\rm B$  vertauscht.  Wie wirkt sich das auf die Basisfunktionen aus?

  •  Auch hier gibt es  $N=3$  Basisfunktionen, aber nun andere:  Nämlich  $\varphi_1(t) = s_1(t)$,  $\varphi_2(t) = s_2(t)$,  $\varphi_3(t) = s_3(t)$.

(4)  Die  $M=4$  Signale der Einstellung  $\rm D$  lassen sich durch nur  $N=2$  Basisfunktionen ausdrücken?  Begründen Sie dieses Ergebnis.

  •  Es gilt  $s_3(t) = s_1(t)/4 - s_2(t)/2$  und  $s_4(t) = -s_1(t) - s_2(t)$.  Das heißt:  $s_3(t)$  und  $s_4(t)$  liefern keine neuen Basisfunktionen.

(5)  Interpretieren Sie die ausgegebenen Grafiken für die Einstellung  $\rm E$  im Vergleich zur Einstellung  $\rm D$.

  •  Bei der Einstellung  $\rm E$  ist die Reihenfolge der Signale gegenüber der Einstellung   $\rm D$  vertauscht. Ähnlich wie zwischen  $\rm B$  und  $\rm C$.
  •  Auch diese  $M=4$  Signale lassen sich somit durch nur  $N=2$  Basisfunktionen ausdrücken, aber durch andere als in der Aufgabe  (4).

(6)  Welches Ergebnis liefern die vier Signale gemäß der Einstellung  $\rm F$?

  •  Die die Signale  $s_1(t)$, ... , $s_4(t)$  basieren alle auf einer einzigen Basisfunktion   $\varphi_1(t)$, die formgleich mit  $s_1(t)$  ist.  Es gilt  $N=1$.
  •  Die vektoriellen Repräsentanten der Signale  $s_1(t)$,  ... , $s_4(t)$  sind  $\pm 0.866$  und  $\pm 1.732$.  Sie liegen inder 2D–Darstellung alle auf einer Linie.

(7)  Es gilt nun die „M–ASK / BPSK”–Einstellung  $\rm G$.  Interpretieren Sie das Ergebnis und versuchen Sie, einen Zusammenhang zu einer früheren Aufgabe herzustellen.

  •  Vergleicht man die angegebenen Zahlenwerte, so erkennt man, dass eine ähnliche Konstellation betrachtet wird wie bei der „Basisband”–Einstellung  $\rm A$.
  •  Der einzige Unterschied ist, dass nun alle Energien nur halb so groß sind wie vorher.  Bezüglich der Amplituden wirkt sich das um den Faktor  $\sqrt{2}$  aus.
  •  Somit ist nun der vektorielle Repräsentant des unteren Signals    $\mathbf{s}_4 = (-1.021, \hspace{0.15cm} -0.289, \hspace{0.15cm} +0.500)$  anstelle von  $\mathbf{s}_4 = (-1.444, \hspace{0.15cm} -0.408, \hspace{0.15cm} +0.707)$.
  •  Bei der Einstellung  $\rm H$  sind gegenüber  $\rm G$  alle Amplituden verdoppelt. Somit ergibt sich hier  $\mathbf{s}_4 = (-2.041, \hspace{0.15cm} -0.577, \hspace{0.15cm} +1.000)$.

(8)  Es gelte die „M–ASK / BPSK”–Einstellung  $\rm I$.  Interpretieren Sie das Ergebnis.  Versuchen Sie wieder, einen Zusammenhang zu einer früheren Aufgabe herzustellen.

  •  Hier wird eine ähnliche Konstellation betrachtet wird wie bei der „Basisband”–Einstellung  $\rm C$, aber nun mit nur halb so großen Energien.
  •  Somit ist nun der vektorielle Repräsentant des unteren Signals    $\mathbf{s}_4 = (+0.707, \hspace{0.15cm} -0.707, \hspace{0.15cm} 0.000)$  anstelle von  $\mathbf{s}_4 = (+1.000, \hspace{0.15cm} -1.000, \hspace{0.15cm} 0.000)$.
  •  Somit ist nun der vektorielle Repräsentant des unteren Signals    $\mathbf{s}_4 = (+0.707, \hspace{0.15cm} -0.707, \hspace{0.15cm} 0.000)$  anstelle von  $\mathbf{s}_4 = (+1.000, \hspace{0.15cm} -1.000, \hspace{0.15cm} 0.000)$.
  •  Mit der „M–ASK / BPSK”–Einstellung  $\rm J$  wird eine ähnliche Konstellation betrachtet wie mit der „Basisband”–Einstellung  $\rm D$. Gleiches gilt für  $\rm K$  und  $\rm E$.

(9)  Es gelte die „M–ASK / BPSK”–Einstellung  $\rm L$.  Interpretieren Sie das Ergebnis.  Gibt es einen Zusammenhang zu einer früheren Aufgabe?

  •  Die Einstellung  $\rm L$  ist vergleichbar mit der obigen Einstellung  $\rm F$.  Es gilt  $N=1$. Das heißt:
  •  Alle  $M=4$  Signale sind allein durch die Basisfunktion  $\varphi_1(t)$  darstellbar, die formgleich mit  $s_1(t)$  ist.

(10)  Nun gelte die „Nur eine Frequenz”–Einstellung  $\rm M$.  Interpretieren Sie die dargestellten Grafiken.

  •  Alle Signale  $s_i(t)$  haben die Amplitude  $A_i = 1$  und gleiche Frequenz  $f=f_1$.  Das heißt:  Jeweils eine Schwingung innerhalb der Zeit  $T$.
  •  Die  $M=4$  Signale unterscheiden sich nur durch die Phasen  $\phi_1 = +45^\circ$,  $\phi_2 = +135^\circ$,  $\phi_3 = -135^\circ$  und  $\phi_4 = -45^\circ$.  Es gibt  $N=2$  Basisfunktionen.
  •  Die Basisfunktion  $\varphi_1(t)$  ist formgleich mit  $s_1(t)$  und  $\varphi_2(t)$  ist formgleich mit  $s_2(t)$.  Dies gilt für die meisten Einstellungen der dritten Rubrik.
  • Die vektoriellen Repräsentanten der Signale lauten:  $\mathbf{s}_1 = (0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707)$,   $\mathbf{s}_3 = (-0.707, \hspace{0.15cm} 0)$,  $\mathbf{s}_4 = (0, \hspace{0.15cm} -0.707)$.

(11)  Welche Unterschiede gibt es mit der Einstellung  $\rm N$  gegenüber der Einstellung  $\rm M$?

  •  Die vier Mustersignale  $s_i(t)$  beschreiben nun von oben nach unten einen Cosinus,  einen Sinus,  einen Minus–Cosinus  und einen Minus–Sinus.
  •  Für die  $N=2$  Basisfunktionen gilt:  $\varphi_1(t) = \sqrt{2} \cdot \cos(2\pi f_1 t)$,  $\varphi_2(t) = \sqrt{2} \cdot\sin(2\pi f_1 t)$.  Auch  $s_3(t)$  und  $s_4(t)$  lassen sich damit beschreiben.
  •  Die vektoriellen Repräsentanten der Signale lauten:  $\mathbf{s}_1 = (0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707)$,   $\mathbf{s}_3 = (-0.354, \hspace{0.15cm} 0)$,  $\mathbf{s}_4 = (0, \hspace{0.15cm} -0.354)$.
  •  Dieses Ergebnis berücksichtigt die nur halb so großen Amplituden von  $s_3(t)$  und  $s_4(t)$  gegenüber  $s_1(t)$  und  $s_2(t)$.

(12)  Wie unterscheidet sich die Einstellung  $\rm O$  von der Einstellung  $\rm N$?   Analysieren Sie den vektoriellen Repräsentanten für  $\mathbf{s}_3$  genauer.

  •  Das Signal  $s_2(t)$  bei Einstellung  $\rm O$  ist minus–sinusförmig   ⇒   $\varphi_1(t) = \sqrt{2} \cdot \cos(2\pi f_1 t)$,  $\varphi_2(t) = -\sqrt{2} \cdot\sin(2\pi f_1 t)$.
  •  Für die Darstellung Harmonischer Schwingungen werden häufig diese Basisfunktionen  „Cosinus” und  „Minus–Sinus” verwendet.
  •  Außerdem unterscheiden sich die Signale  $s_3(t)$  und  $s_4(t)$  durch die halbe Amplitude und die Phsenwerte sind keine Vielfachen von  $90^\circ$.
  • Die vektoriellen Repräsentanten der Signale lauten:  $\mathbf{s}_1 = (0.707, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707)$,   $\mathbf{s}_3 = (0.612, \hspace{0.15cm} 0.354)$,  $\mathbf{s}_4 = (0.354, \hspace{0.15cm} -0.612)$.  Überprüfung:
  • $s_3(t) = \cos(2\pi f_1 t + 30^\circ) = \cos(30^\circ) \cdot \cos(2\pi f_1 t)\hspace{-0.05cm} - \hspace{-0.05cm} \sin(30^\circ) \cdot \sin(2\pi f_1 t)=\sqrt{3}/(2\sqrt{2})\cdot \varphi_1(t) + 1/(2\sqrt{2})\cdot \varphi_2(t)= 0.612\cdot \varphi_1(t) + 0.354\cdot \varphi_2(t)$.

(13)  Wie unterscheidet sich die Einstellung  $\rm P$  von der Einstellung  $\rm O$?   Gibt es in der Rubrik „Nur eine Frequenz” eine Einstellung für  $N=1$ ?

  • Mit der Einstellung  $\rm P$  ergeben sich gleiche vektorielle Repräsentanten.  Einziger Unterschied zur Einstellung  $\rm O$  ist die doppelte Frequenz.
  • Das Ergebnis  $N=1$  ist nur möglich, wenn alle Signale gleiche Frequenz und gleiche Phase besitzen   ⇒   Einstellung  $\rm R$   $($unterschiedliche Amplituden$)$.

(14)  Nun gelte die „Mehrere Frequenzen”–Einstellung  $\rm S$.  Interpretieren Sie die dargestellten Grafiken.

  • Die vier Signale  $s_1(t)$ ... $s_4(t)$  weisen nun unterschiedliche Frequenzen auf:  $f=0$  (Gleichsignal),  $f=f_1$,  $f=f_2 = 2f_1$,  $f=f_3 = 3f_1$.
  • Deshalb ergeben sich hier  $N=4$  Basisfunktionen  $\varphi_i(t)$, die alle formgleich mit den entsprechenden Signalen  $s_i(t)$  sind.  Für  $i=1$  gilt:  $\varphi_1(t)=1$.
  • Die weiteren Basisfunktionen haben wegen der Energienormierung einheitlich die Form  $\varphi_i(t)= \sqrt{2}\cdot \cos(2\pi f_i t)$.

(15)  Wie unterscheidet sich die Einstellung  $\rm T$  von der Einstellung  $\rm S$?   Begründen Sie das Ergebnis  $N=3$.  Interpretieren Sie auch die Grafiken zur Einstellung  $\rm U$.

  • Die Signale  $s_1(t)$ ... $s_3(t)$  beinhalten die Frequenzen  $f=0$,  $f=f_1$  und  $f=f_2 = 2f_1$.  Jedes Signal erzwingt eine eigene Basisfunktion.
  • Die vektoriellen Repräsentanten dieser Signale lauten:  $\mathbf{s}_1 = (1, \hspace{0.15cm} 0, \hspace{0.15cm} 0)$, $\mathbf{s}_2 = (0, \hspace{0.15cm} 0.707, \hspace{0.15cm} 0)$,   $\mathbf{s}_3 = (0, \hspace{0.15cm} 0,\hspace{0.15cm} 0.707)$.
  • Das vierte Signal ist als Linearkombination darstellbar:  $s_4(t)=s_1(t)-0.5 \cdot s_2(t)-0.5 \cdot s_3(t)$  ⇒   vektorieller Repräsentant:  $\mathbf{s}_1 = (1, \hspace{0.15cm} -0.354, \hspace{0.15cm} 0.354)$.
  • Die Einstellung  $\rm U$  ist nur eine zyklische Vertauschung von der Einstellung  $\rm T$   ⇒   es genügen ebenfalls  $N = 3$  Basisfunktionen.
  • Die  $N = 3$  Basisfunktionen sind aber deutlich komplizierter als bei  $\rm T$, weil „Gram–Schmidt” signifikant von der Reihenfolge der Mustersignale abhängt.

(16)  Interpretieren Sie die dargestellten Grafiken für die Einstellung  $\rm V$  und anschließend für die Einstellung  $\rm W$.

  • Die ersten drei Signale führen zu je einer cosinusförmigen Basisfunktion mit den Frequenzen $f_2$, $f_3$  und $f_4$.
  • Das letzte Signal ist  $s_4(t)= \cos(2\pi f_3 t) \cdot \cos(2\pi f_1 t) = 1/2 \cdot\big [ \cos(2\pi \cdot (f_3 - f_1)\cdot t) + \cos(2\pi \cdot (f_3 + f_1)\cdot t)\big ] = 1/2 \cdot \big [\cos(2\pi f_2 t) + \cos(2\pi f_4 t)\big ] $. 
  •  Der vektorielle Repräsentant des untersten Signals gemäß Einstellung  $\rm V$  lautet somit:    $\mathbf{s}_4 = (0.354, \hspace{0.15cm} 0, \hspace{0.15cm} 0.354)$.
  •  Bei der Einstellung  $\rm W$  ergeben sich genau die gleichen Basisfunktionen wie bei  $\rm W$. Hier erhält man für das unterste Signal   $\mathbf{s}_4 = (0.354, \hspace{0.15cm} 0, \hspace{0.15cm} -0.354)$.
  • Begründung  $s_4(t)= \sin(2\pi f_3 t) \cdot \sin(2\pi f_1 t) = 1/2 \cdot \big [\cos(2\pi f_2 t) - \cos(2\pi f_4 t)\big ] $.  Auch hier liefert die Basisfunktion  $\varphi_2(t)$  keinen Beitrag.

(17)  Wie viele Basisfunktionen benötigt man für die vier Signale gemäß der Einstellung  $\rm X$?

  • Das Ergebnis lautet:  $N = 4$.  Jedes der vier Signale  $\cos(2\pi f_1 t)$,  $\sin(2\pi f_1 t)$  $\cos(2\pi f_2 t)$,   $\sin(2\pi f_2 t)$  führt zu einer neuen Basisfunktion.



Zur Handhabung des Applets


Gram 11 version2.png

    (A)     Auswahl zwischen 24 Parametersätze für  $\{s_1(t), \hspace{0.05cm} \text{...} \hspace{0.05cm} , s_M(t)\}$

    (B)     Umschaltung:   Einzelschritt  /  Gesamtdarstellung

    (C)     2D–  bzw.  3D–Darstellung der vektoriellen Repräsentanten
                (siehe rechte Grafik, Koordinatensystem kann gedreht werden)

    (D)     Reset  –  Rücksetzung aller Parameter auf Grundeinstellung

    (E)     Grafikfeld zur Darstellung der Mustersignale  $s_k(t)$

    (F)     Grafikfeld zur Darstellung der Hilfsfunktionen  $\theta_k(t)$

    (G)     Grafikfeld zur Darstellung der Basisfunktionen  $\varphi_k(t)$

    (H)     Bereich für die Versuchsdurchführung:   Aufgabenauswahl

Gram 12 verion1.png


Über die Autoren

Dieses interaktive Berechnungstool wurde am  »Lehrstuhl für Nachrichtentechnik«  der  »Technischen Universität München«  konzipiert und realisiert.


Die Umsetzung dieses Applets auf HTML 5 wurde durch das Programm  »EXIni«  (Exzellenzinitiative)  der Technischen Universität München gefördert.  Wir bedanken uns.


Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen