Stochastische Signaltheorie/Verallgemeinerung auf N-dimensionale Zufallsgrößen: Unterschied zwischen den Versionen
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Zufallsgrößen mit statistischen Bindungen |Vorherige Seite=Kreuzkorrelationsfunktion und Kreuzleistungsdichte |Nächste Seite=Stochast…“) |
|||
Zeile 24: | Zeile 24: | ||
Die Realteile der Korrelationsmatrix sind weiterhin symmetrisch zur Hauptdiagonalen, während sich die dazugehörigen Imaginärteile durch das Vorzeichen unterscheiden. | Die Realteile der Korrelationsmatrix sind weiterhin symmetrisch zur Hauptdiagonalen, während sich die dazugehörigen Imaginärteile durch das Vorzeichen unterscheiden. | ||
+ | ==Kovarianzmatrix== | ||
+ | Man kommt von der Korrelationsmatrix $\mathbf{R}$ zur so genannten Kovarianzmatrix | ||
+ | $${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} K_{11} & K_{12} & \cdots & K_{1N} \\ K_{21} & K_{22}& \cdots & K_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ K_{N1} & K_{N2} & \cdots & K_{NN} \end{array} \right] ,$$ | ||
+ | wenn die Matrixelemente $K_{ij} = {\rm E}[(x_i – m_i) · (x_j – m_j)]$ jeweils ein Zentralmoment erster Ordnung angeben. Mit dem Vektor $\mathbf{m} = [m_1, m_2, ... , m_N]^{\rm T}$ kann somit auch geschrieben werden: | ||
+ | $$\mathbf{K}= {{\rm E}[(\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\rm T} ]} .$$ | ||
+ | |||
+ | Es soll ausdrücklich darauf hingewiesen werden, dass $m_1$ den Mittelwert der Komponente $x_1$ und $m_2$ den Mittelwert von $x_2$ bezeichnet – nicht etwa das Moment erster bzw. zweiter Ordnung. | ||
+ | |||
+ | |||
+ | Die Matrix $\mathbf{K}$ zeigt bei reellen mittelwertfreien Gauß–Größen folgende weitere Eigenschaften: | ||
+ | *Das Element der $i$-ten Zeile und $j$-ten Spalte lautet mit den beiden Streuungen $σ_i$ und $σ_j$ und dem Korrelationskoeffizienten $ρ_{ij}$. Formelmäßig gilt $K_{ij} = σ_i · σ_j · ρ_{ij} = K_{ji}.$ | ||
+ | *Berücksichtigt man noch die Beziehung $ρ_{ii} =$ 1, so erhält man für die Kovarianzmatrix: | ||
+ | $${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} | ||
+ | \sigma_{1}^2 & \sigma_{1}\sigma_{2}\rho_{12} & \cdots & \sigma_{1}\sigma_{N}\rho_{1N} \\ | ||
+ | \sigma_{2}\sigma_{1}\rho_{21} & \sigma_{2}^2& \cdots & \sigma_{2}\sigma_{N}\rho_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{N}\sigma_{1}\rho_{N1} & \sigma_{N}\sigma_{2}\rho_{N2} & | ||
+ | \cdots & \sigma_{N}^2 \end{array} \right] .$$ | ||
+ | *Aufgrund der Beziehung $ρ_{ij} = ρ_{ji}$ ist die Kovarianzmatrix bei reellen Größen symmetrisch zur Hauptdiagonalen. Bei komplexen Größen würde dagegen $ρ_{ij} = ρ_{ji}^∗$ gelten. | ||
+ | |||
+ | |||
+ | |||
+ | {{Beispiel}} | ||
+ | Wir betrachten drei Kovarianzmatrizen: | ||
+ | $${\mathbf{K}_2} = \left[ \begin{array}{cc} | ||
+ | 1 & -0.5 \\ | ||
+ | -0.5 & 1 | ||
+ | \end{array} \right], | ||
+ | \hspace{0.2cm}{\mathbf{K}_3} = 4 \cdot \left[ \begin{array}{ccc} | ||
+ | 1 & 1/2 & 1/4\\ | ||
+ | 1/2 & 1 & 3/4 \\ | ||
+ | 1/4 & 3/4 & 1 | ||
+ | \end{array}\right], \hspace{0.2cm}{\mathbf{K}_4} = | ||
+ | \left[ | ||
+ | \begin{array}{cccc} | ||
+ | 1 & 0 & 0 & 0 \\ | ||
+ | 0 & 4 & 0 & 0 \\ | ||
+ | 0 & 0 & 9 & 0 \\ | ||
+ | 0 & 0 & 0 & 16 | ||
+ | \end{array} \right].$$ | ||
+ | |||
+ | * $\mathbf{K}_2$ beschreibt eine 2D–Zufallsgröße, wobei der Korrelationskoeffizient $ρ$ zwischen den zwei Komponenten –0.5 beträgt und beide Komponenten die Streuung $σ =$ 1 aufweisen. | ||
+ | *Bei der 3D-Zufallsgröße gemäß $\mathbf{K}_3$ haben alle Komponenten die gleiche Streuung $σ =$ 2. Die stärksten Bindungen bestehen zwischen $x_2$ und $x_3$; wobei $ρ_{23} =$ 3/4 gilt. | ||
+ | *Die vier Komponenten der durch $\mathbf{K}_4$ gekennzeichneten Zufallsgröße sind unkorreliert, bei Gaußscher WDF auch statistisch unabhängig. Die Streuungen sind $σ_i = i$ für $i =$ 1, ... , 4. | ||
+ | |||
+ | |||
+ | {{end}} | ||
+ | |||
+ | ==Zusammenhang zwischen Kovarianzmatrix und WDF== | ||
+ | Die ''Wahrscheinlichkeitsdichtefunktion'' einer $N$-dimensionalen Gaußschen Zufallsgröße $\mathbf{x}$ lautet: | ||
+ | $$\mathbf{f_x}(\mathbf{x})= \frac{1}{\sqrt{(2 \pi)^N \cdot | ||
+ | |\mathbf{K}|}}\cdot {\rm exp}{\left[-\frac{1}{2}\cdot(\mathbf{x} - | ||
+ | \mathbf{m})^{\rm T}\cdot\mathbf{K}^{-1} \cdot(\mathbf{x} - | ||
+ | \mathbf{m}) \right]} .$$ | ||
+ | |||
+ | Hierbei bezeichnen: | ||
+ | * $\mathbf{x}$ den Spaltenvektor der betrachteten $N$-dimensionalen Zufallsgröße, | ||
+ | * $\mathbf{m}$ den Spaltenvektor der zugehörigen Mittelwerte, | ||
+ | * $|\mathbf{K}|$ die Determinante der $N×N$–Kovarianzmatrix $\mathbf{K}$ – eine skalare Größe, | ||
+ | * $\mathbf{K}^{−1}$ die Inverse von $\mathbf{K}$; diese ist ebenfalls eine $N×N$-Matrix. | ||
+ | |||
+ | |||
+ | Die Multiplikationen des Zeilenvektors $(\mathbf{x} – \mathbf{m})^{\rm T}$, der Matrix $\mathbf{K}^{–1}$ und des Spaltenvektors $(\mathbf{x} – \mathbf{m})$ ergibt im Argument der Exponentialfunktion erwartungsgemäß ein Skalar. | ||
+ | |||
+ | |||
+ | {{Beispiel}} | ||
+ | Wir betrachten wie im Beispiel auf der letzten Seite wieder eine 4D-Zufallsgröße $\mathbf{x}$, deren Kovarianzmatrix nur auf der Hauptdiagonalen besetzt ist: | ||
+ | $${\mathbf{K}} = \left[ | ||
+ | \begin{array}{cccc} | ||
+ | \sigma_{1}^2 & 0 & 0 & 0 \\ | ||
+ | 0 & \sigma_{2}^2 & 0 & 0 \\ | ||
+ | 0 & 0 & \sigma_{3}^2 & 0 \\ | ||
+ | 0 & 0 & 0 & \sigma_{4}^2 | ||
+ | \end{array} \right].$$ | ||
+ | Deren Determinante ist $|\mathbf{K}| = σ_1^2 · σ_2^2 · σ_3^2 · σ_4^2$. Die inverse Kovarianzmatrix ergibt sich zu: | ||
+ | $${\mathbf{K}}^{-1} \cdot {\mathbf{K}} = \left[ | ||
+ | \begin{array}{cccc} | ||
+ | 1 & 0 & 0 & 0 \\ | ||
+ | 0 & 1 & 0 & 0 \\ | ||
+ | 0 & 0 & 1 & 0 \\ | ||
+ | 0 & 0 & 0 & 1 | ||
+ | \end{array} \right] | ||
+ | \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\mathbf{K}}^{-1} = | ||
+ | \left[ | ||
+ | \begin{array}{cccc} | ||
+ | \sigma_{1}^{-2} & 0 & 0 & 0 \\ | ||
+ | 0 & \sigma_{2}^{-2} & 0 & 0 \\ | ||
+ | 0 & 0 & \sigma_{3}^{-2} & 0 \\ | ||
+ | 0 & 0 & 0 & \sigma_{4}^{-2} | ||
+ | \end{array} \right].$$ | ||
+ | |||
+ | Für mittelwertfreie Größen $(\mathbf{m = 0})$ lautet somit die WDF: | ||
+ | $$\mathbf{f_{\rm x}}(\mathbf{x})= \frac{1}{{(2 \pi)^2 \cdot \sigma_1\cdot | ||
+ | \sigma_2\cdot \sigma_3\cdot \sigma_4}}\cdot {\rm | ||
+ | exp}{\left[-(\frac{x_1^2}{2\sigma_1^2} | ||
+ | \hspace{0.1cm}+\hspace{0.1cm}\frac{x_2^2}{2\sigma_2^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_3^2}{2\sigma_3^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_4^2}{2\sigma_4^2}) | ||
+ | \right]} .$$ | ||
+ | Ein Vergleich mit Kapitel 4.2 zeigt, dass es sich um eine 4D-Zufallsgröße mit statistisch unabhängigen und unkorrelierten Komponenten handelt, da folgende Bedingung erfüllt ist: | ||
+ | $$\mathbf{f_x}(\mathbf{x})= \mathbf{f_{x1}}(\mathbf{x_1}) | ||
+ | \cdot\mathbf{f_{x2}}(\mathbf{x_2}) | ||
+ | \cdot\mathbf{f_{x3}}(\mathbf{x_3}) | ||
+ | \cdot\mathbf{f_{x4}}(\mathbf{x_4}) .$$ | ||
+ | |||
+ | Der Fall korrelierter Komponenten wird in Aufgaben zu diesem Kapitel eingehend behandelt. | ||
+ | {{end}} | ||
+ | |||
+ | |||
+ | Die folgenden Links verweisen auf Seiten mit Grundlagen der Matrizenrechnung am Kapitelende: | ||
+ | Determinante einer Matrix | ||
+ | |||
+ | Inverse einer Matrix | ||
Version vom 6. Juni 2016, 18:04 Uhr
Korrelationsmatrix
Bisher wurden nur statistische Bindungen zwischen zwei (skalaren) Zufallsgrößen betrachtet. Für den allgemeineren Fall – einer Zufallsgröße mit $N$ Dimensionen – bietet sich zweckmäßiger Weise eine Vektor- bzw. Matrixdarstellung an. Für die folgende Beschreibung wird vorausgesetzt:
- Die $N$–dimensionale Zufallsgröße wird als Vektor dargestellt:
$${\mathbf{x}} = [\hspace{0.03cm}x_1, \hspace{0.03cm}x_2, \hspace{0.1cm}... \hspace{0.1cm}, \hspace{0.03cm}x_N]^{\rm T}.$$ Hierbei ist $\mathbf{x}$ ein Spaltenvektor, was aus dem Zusatz „T” – dies steht für „transponiert” – des angegebenen Zeilenvektors hervorgeht.
- Die $N$ Komponenten $x_i$ seien jeweils eindimensionale reelle Gaußsche Zufallsgrößen.
Statistische Bindungen zwischen den $N$ Zufallsgrößen werden durch die Korrelationsmatrix vollständig beschrieben:
$${\mathbf{R}} =\left[ R_{ij} \right] = \left[ \begin{array}{cccc}R_{11} & R_{12} & \cdots & R_{1N} \\ R_{21} & R_{22}& \cdots & R_{2N} \\ \cdots & \cdots & \cdots &\cdots \\ R_{N1} & R_{N2} & \cdots & R_{NN} \end{array} \right] .$$
Die $N^2$ Elemente dieser $N×N$-Matrix geben jeweils das gemeinsame Moment erster Ordnung zwischen zwei Komponenten an:
$$R_{ij}= {{\rm E}[x_i \cdot x_j ]} = R_{ji} .$$
In Vektorschreibweise lautet somit die Korrelationsmatrix:
$$\mathbf{R}= {\rm E[\mathbf{x} \cdot {\mathbf{x}}^{\rm T} ]} .$$
Da $\mathbf{x}$ ein Spaltenvektor mit $N$ Dimensionen ist und somit der transponierte Vektor $\mathbf{x}^{\rm T}$ ein Zeilenvektor gleicher Länge, ergibt das Produkt $\mathbf{x} · \mathbf{x}^{\rm T}$ eine $N×N$-Matrix. Dagegen wäre $\mathbf{x}^{\rm T}· \mathbf{x}$ eine 1×1-Matrix, also ein Skalar. Für den hier nicht weiter betrachteten Sonderfall komplexer Komponenten $x_i$ sind auch die Matrixelemente komplex:
$$R_{ij}= {{\rm E}[x_i \cdot x_j^{\star} ]} = R_{ji}^{\star} .$$
Die Realteile der Korrelationsmatrix sind weiterhin symmetrisch zur Hauptdiagonalen, während sich die dazugehörigen Imaginärteile durch das Vorzeichen unterscheiden.
Kovarianzmatrix
Man kommt von der Korrelationsmatrix $\mathbf{R}$ zur so genannten Kovarianzmatrix $${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} K_{11} & K_{12} & \cdots & K_{1N} \\ K_{21} & K_{22}& \cdots & K_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ K_{N1} & K_{N2} & \cdots & K_{NN} \end{array} \right] ,$$ wenn die Matrixelemente $K_{ij} = {\rm E}[(x_i – m_i) · (x_j – m_j)]$ jeweils ein Zentralmoment erster Ordnung angeben. Mit dem Vektor $\mathbf{m} = [m_1, m_2, ... , m_N]^{\rm T}$ kann somit auch geschrieben werden: $$\mathbf{K}= {{\rm E}[(\mathbf{x} - \mathbf{m}) (\mathbf{x} - \mathbf{m})^{\rm T} ]} .$$
Es soll ausdrücklich darauf hingewiesen werden, dass $m_1$ den Mittelwert der Komponente $x_1$ und $m_2$ den Mittelwert von $x_2$ bezeichnet – nicht etwa das Moment erster bzw. zweiter Ordnung.
Die Matrix $\mathbf{K}$ zeigt bei reellen mittelwertfreien Gauß–Größen folgende weitere Eigenschaften:
- Das Element der $i$-ten Zeile und $j$-ten Spalte lautet mit den beiden Streuungen $σ_i$ und $σ_j$ und dem Korrelationskoeffizienten $ρ_{ij}$. Formelmäßig gilt $K_{ij} = σ_i · σ_j · ρ_{ij} = K_{ji}.$
- Berücksichtigt man noch die Beziehung $ρ_{ii} =$ 1, so erhält man für die Kovarianzmatrix:
$${\mathbf{K}} =\left[ K_{ij} \right] = \left[ \begin{array}{cccc} \sigma_{1}^2 & \sigma_{1}\sigma_{2}\rho_{12} & \cdots & \sigma_{1}\sigma_{N}\rho_{1N} \\ \sigma_{2}\sigma_{1}\rho_{21} & \sigma_{2}^2& \cdots & \sigma_{2}\sigma_{N}\rho_{2N} \\ \cdots & \cdots & \cdots & \cdots \\ \sigma_{N}\sigma_{1}\rho_{N1} & \sigma_{N}\sigma_{2}\rho_{N2} & \cdots & \sigma_{N}^2 \end{array} \right] .$$
- Aufgrund der Beziehung $ρ_{ij} = ρ_{ji}$ ist die Kovarianzmatrix bei reellen Größen symmetrisch zur Hauptdiagonalen. Bei komplexen Größen würde dagegen $ρ_{ij} = ρ_{ji}^∗$ gelten.
Wir betrachten drei Kovarianzmatrizen: $${\mathbf{K}_2} = \left[ \begin{array}{cc} 1 & -0.5 \\ -0.5 & 1 \end{array} \right], \hspace{0.2cm}{\mathbf{K}_3} = 4 \cdot \left[ \begin{array}{ccc} 1 & 1/2 & 1/4\\ 1/2 & 1 & 3/4 \\ 1/4 & 3/4 & 1 \end{array}\right], \hspace{0.2cm}{\mathbf{K}_4} = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 9 & 0 \\ 0 & 0 & 0 & 16 \end{array} \right].$$
- $\mathbf{K}_2$ beschreibt eine 2D–Zufallsgröße, wobei der Korrelationskoeffizient $ρ$ zwischen den zwei Komponenten –0.5 beträgt und beide Komponenten die Streuung $σ =$ 1 aufweisen.
- Bei der 3D-Zufallsgröße gemäß $\mathbf{K}_3$ haben alle Komponenten die gleiche Streuung $σ =$ 2. Die stärksten Bindungen bestehen zwischen $x_2$ und $x_3$; wobei $ρ_{23} =$ 3/4 gilt.
- Die vier Komponenten der durch $\mathbf{K}_4$ gekennzeichneten Zufallsgröße sind unkorreliert, bei Gaußscher WDF auch statistisch unabhängig. Die Streuungen sind $σ_i = i$ für $i =$ 1, ... , 4.
Zusammenhang zwischen Kovarianzmatrix und WDF
Die Wahrscheinlichkeitsdichtefunktion einer $N$-dimensionalen Gaußschen Zufallsgröße $\mathbf{x}$ lautet: $$\mathbf{f_x}(\mathbf{x})= \frac{1}{\sqrt{(2 \pi)^N \cdot |\mathbf{K}|}}\cdot {\rm exp}{\left[-\frac{1}{2}\cdot(\mathbf{x} - \mathbf{m})^{\rm T}\cdot\mathbf{K}^{-1} \cdot(\mathbf{x} - \mathbf{m}) \right]} .$$
Hierbei bezeichnen:
- $\mathbf{x}$ den Spaltenvektor der betrachteten $N$-dimensionalen Zufallsgröße,
- $\mathbf{m}$ den Spaltenvektor der zugehörigen Mittelwerte,
- $|\mathbf{K}|$ die Determinante der $N×N$–Kovarianzmatrix $\mathbf{K}$ – eine skalare Größe,
- $\mathbf{K}^{−1}$ die Inverse von $\mathbf{K}$; diese ist ebenfalls eine $N×N$-Matrix.
Die Multiplikationen des Zeilenvektors $(\mathbf{x} – \mathbf{m})^{\rm T}$, der Matrix $\mathbf{K}^{–1}$ und des Spaltenvektors $(\mathbf{x} – \mathbf{m})$ ergibt im Argument der Exponentialfunktion erwartungsgemäß ein Skalar.
Wir betrachten wie im Beispiel auf der letzten Seite wieder eine 4D-Zufallsgröße $\mathbf{x}$, deren Kovarianzmatrix nur auf der Hauptdiagonalen besetzt ist: $${\mathbf{K}} = \left[ \begin{array}{cccc} \sigma_{1}^2 & 0 & 0 & 0 \\ 0 & \sigma_{2}^2 & 0 & 0 \\ 0 & 0 & \sigma_{3}^2 & 0 \\ 0 & 0 & 0 & \sigma_{4}^2 \end{array} \right].$$ Deren Determinante ist $|\mathbf{K}| = σ_1^2 · σ_2^2 · σ_3^2 · σ_4^2$. Die inverse Kovarianzmatrix ergibt sich zu: $${\mathbf{K}}^{-1} \cdot {\mathbf{K}} = \left[ \begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{array} \right] \hspace{0.5cm}\Rightarrow \hspace{0.5cm} {\mathbf{K}}^{-1} = \left[ \begin{array}{cccc} \sigma_{1}^{-2} & 0 & 0 & 0 \\ 0 & \sigma_{2}^{-2} & 0 & 0 \\ 0 & 0 & \sigma_{3}^{-2} & 0 \\ 0 & 0 & 0 & \sigma_{4}^{-2} \end{array} \right].$$
Für mittelwertfreie Größen $(\mathbf{m = 0})$ lautet somit die WDF: $$\mathbf{f_{\rm x}}(\mathbf{x})= \frac{1}{{(2 \pi)^2 \cdot \sigma_1\cdot \sigma_2\cdot \sigma_3\cdot \sigma_4}}\cdot {\rm exp}{\left[-(\frac{x_1^2}{2\sigma_1^2} \hspace{0.1cm}+\hspace{0.1cm}\frac{x_2^2}{2\sigma_2^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_3^2}{2\sigma_3^2}\hspace{0.1cm}+\hspace{0.1cm}\frac{x_4^2}{2\sigma_4^2}) \right]} .$$ Ein Vergleich mit Kapitel 4.2 zeigt, dass es sich um eine 4D-Zufallsgröße mit statistisch unabhängigen und unkorrelierten Komponenten handelt, da folgende Bedingung erfüllt ist: $$\mathbf{f_x}(\mathbf{x})= \mathbf{f_{x1}}(\mathbf{x_1}) \cdot\mathbf{f_{x2}}(\mathbf{x_2}) \cdot\mathbf{f_{x3}}(\mathbf{x_3}) \cdot\mathbf{f_{x4}}(\mathbf{x_4}) .$$
Der Fall korrelierter Komponenten wird in Aufgaben zu diesem Kapitel eingehend behandelt.
Die folgenden Links verweisen auf Seiten mit Grundlagen der Matrizenrechnung am Kapitelende:
Determinante einer Matrix
Inverse einer Matrix