Modulationsverfahren/Hüllkurvendemodulation: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{Header |Untermenü=Amplitudenmodulation und AM–Demodulation |Vorherige Seite=Synchrondemodulation |Nächste Seite=Einseitenbandmodulation }} ==Funktionsw…“)
 
Zeile 37: Zeile 37:
 
{{end}}
 
{{end}}
  
 +
==Realisierung eines Hüllkurvendemodulators (1)==
 +
[[Datei: P_ID1020__Mod_T_2_2_S2_v80Ganz_neu.png | Hüllkurvendemodulator | rechts]]
 +
Die nebenstehende Schaltung zeigt eine einfache Realisierungsmöglichkeit des Hüllkurvendemodulators.
  
 +
Darunter sehen Sie die Signale $r(t)$ und $w(t)$ zur Verdeutlichung des Prinzips.
  
 +
Betrachten Sie zunächst den mit $T = T_{\rm opt}$ bezeichneten mittleren Signalausschnitt.
  
  
 +
Der erste Schaltungsteil – bestehend aus einer Diode und der Parallelschaltung eines Widerstands $R$ und einer Kapazität $C$ – erfüllt folgende Aufgaben:
 +
*Ist das grau gezeichnete Signal $r(t)$ größer als die Spannung $w(t)$ an $R$ und $C$, so leitet die Diode, es gilt $w(t) = r(t)$ und die Kapazität $C$ wird aufgeladen. Diese Bereiche sind grün markiert.
 +
*Gilt $r(t) < w(t)$ wie zu den violett markierten Zeiten, so sperrt die Diode und die Kapazität entlädt sich über den Widerstand $R$. Das Signal fällt exponentiell mit der Zeitkonstanten $T = R · C$ ab.
 +
*Ab den mit Kreisen markierten Zeitpunkten gilt wieder $r(t) > w(t)$ und die Kapazität wird wieder aufgeladen. Man erkennt aus der Skizze, dass $w(t)$ in etwa mit der Hüllkurve $a(t)$ übereinstimmt.
 +
*Die Abweichungen zwischen $w(t)$ und $a(t)$ sind um so geringer, je größer die Trägerfrequenz im Vergleich zur Nachrichtenfrequenz ist. Als Richtwert wird oft $f_{\rm T} ≥ 100 · B_{\rm NF}$ angegeben.
 +
*Gleichzeitig sollte die Zeitkonstante $T$ stets sehr viel größer als $1/f_{\rm T}$ und sehr viel kleiner als $1/B_{\rm NF}$ sein. Ein guter Kompromiss ist das geometrische Mittel zwischen beiden Grenzen:
 +
$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T  \hspace{0.1cm} \ll  \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, \hspace{2cm} T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF}}} \hspace{0.05cm}.$$
 +
*Ist die Zeitkonstante $T$ zu klein wie im linken Bereich obiger Skizze, so wird der Kondensator stets zu schnell entladen und die Differenz $w(t) – a(t)$ unnötig groß.
 +
*Auch ein zu großer Wert $T > T_{\rm opt}$ führt zu einer Verschlechterung, wie im rechten Signalausschnitt dargestellt. In diesem Fall kann $w(t)$ der Hüllkurve $a(t)$ nicht mehr folgen.
 +
 +
 +
 +
{{Beispiel}}
 +
Bei einer $NF$–Bandbreite von 5 kHz sollte die Trägerfrequenz mindestens 500 kHz gewählt werden. Die Zeitkonstante $T$ muss sehr viel größer als $1/f_{\rm T} =$ 2 μs und gleichzeitig sehr viel kleiner als $1/B_{\rm NF} =$ 200 μs sein. Der optimale Wert entsprechend der Kompromissformel ist dann:
 +
$$T_{\rm opt} = {1}/{\sqrt{5 \cdot 10^5 \, {\rm Hz}\cdot 5 \cdot 10^3 \, {\rm Hz}}} = 20 \, \mu s \hspace{0.05cm}.$$
 +
{{end}}
  
  

Version vom 17. Juni 2016, 11:21 Uhr

Funktionsweise bei idealen Bedingungen

Wir gehen zunächst von folgenden Voraussetzungen aus:

  • Das Quellensignal $q(t)$ sei gleichsignalfrei und betragsmäßig auf $q_{\rm max}$ begrenzt.
  • Die Übertragung basiert auf dem Modulationsverfahren „ZSB–AM mit Träger”. Zur einfacheren Darstellung wird die Trägerphase ohne Einschränkung der Allgemeingültigkeit $\mathbf{ϕ_{\rm T} } =$ 0 gesetzt:

$$s(t) = \left(q(t) + A_{\rm T}\right) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$

  • Der Modulationsgrad sei $m$ ≤ 1. Aus der Definition $m = q_{\rm max}/A_{\rm T}$ folgt somit auch $q(t) + A_{\rm T}$ ≥ 0.
  • Der Kanal sei ideal, das heißt, es gibt keine Verzerrungen, keine Dämpfung, keine Laufzeit und keine (Rausch–) Störungen. Mit $H_{\rm K}(f) =$ 1 und $n(t) =$ 0 erhält man somit für das Empfangssignal:

$$r(t) = s(t) = a(t) \cdot \cos (\omega_{\rm T}\cdot t )\hspace{0.05cm}.$$

  • In dieser Gleichung bezeichnet $a(t)$ die Hüllkurve von $r(t)$. Die Phasenfunktion $\mathbf{ϕ}(t)$ ist 0.


Ein Hüllkurvendemodulator detektiert die Hüllkurve $a(t)$ seines Eingangssignals $r(t)$ und gibt diese nach Eliminierung des Gleichanteils $A_{\rm T}$ als Sinkensignal aus: $$v(t) = a(t) - A_{\rm T}\hspace{0.05cm}.$$ Die Entfernung des Gleichanteils $A_{\rm T}$ kann beispielsweise durch einen Hochpass realisiert werden, der alle Frequenzen bis auf $f =$ 0 ungehindert passieren lässt.


Sind alle obigen Voraussetzungen erfüllt, so gilt $υ(t) = q(t)$. Das bedeutet, dass mit einem (idealen) Hüllkurvendemodulator durchaus ein ideales Nachrichtenübertragungssystem realisiert werden kann.


Unten sehen Sie das Empfangssignal $r(t) = s(t)$, wobei „ZSB–AM mit Träger” zugrunde liegt (Modulationsgrad $m =$ 0.5). Die vom Hüllkurvendemodulator auszuwertende Hüllkurve $a(t)$ ist gleich der Summe aus dem Quellensignal $q(t)$ und dem beim Sender zugesetzten Gleichanteil $A_{\rm T}$.


Signalverläufe zur Verdeutlichung der Hüllkurvendemodulation


Für das Demodulatorausgangssignal nach Eliminierung des Gleichanteils $A_{\rm T}$ mit einem Hochpass gilt $υ(t) = q(t)$, vorausgesetzt, dass das Quellensignal $q(t)$ keinen Gleichanteil beinhaltet hat. Ein solcher würde durch den Hochpass ebenfalls entfernt.

Realisierung eines Hüllkurvendemodulators (1)

Hüllkurvendemodulator

Die nebenstehende Schaltung zeigt eine einfache Realisierungsmöglichkeit des Hüllkurvendemodulators.

Darunter sehen Sie die Signale $r(t)$ und $w(t)$ zur Verdeutlichung des Prinzips.

Betrachten Sie zunächst den mit $T = T_{\rm opt}$ bezeichneten mittleren Signalausschnitt.


Der erste Schaltungsteil – bestehend aus einer Diode und der Parallelschaltung eines Widerstands $R$ und einer Kapazität $C$ – erfüllt folgende Aufgaben:

  • Ist das grau gezeichnete Signal $r(t)$ größer als die Spannung $w(t)$ an $R$ und $C$, so leitet die Diode, es gilt $w(t) = r(t)$ und die Kapazität $C$ wird aufgeladen. Diese Bereiche sind grün markiert.
  • Gilt $r(t) < w(t)$ wie zu den violett markierten Zeiten, so sperrt die Diode und die Kapazität entlädt sich über den Widerstand $R$. Das Signal fällt exponentiell mit der Zeitkonstanten $T = R · C$ ab.
  • Ab den mit Kreisen markierten Zeitpunkten gilt wieder $r(t) > w(t)$ und die Kapazität wird wieder aufgeladen. Man erkennt aus der Skizze, dass $w(t)$ in etwa mit der Hüllkurve $a(t)$ übereinstimmt.
  • Die Abweichungen zwischen $w(t)$ und $a(t)$ sind um so geringer, je größer die Trägerfrequenz im Vergleich zur Nachrichtenfrequenz ist. Als Richtwert wird oft $f_{\rm T} ≥ 100 · B_{\rm NF}$ angegeben.
  • Gleichzeitig sollte die Zeitkonstante $T$ stets sehr viel größer als $1/f_{\rm T}$ und sehr viel kleiner als $1/B_{\rm NF}$ sein. Ein guter Kompromiss ist das geometrische Mittel zwischen beiden Grenzen:

$$1/f_{\rm T}\hspace{0.1cm} \ll \hspace{0.1cm} T \hspace{0.1cm} \ll \hspace{0.1cm} 1/B_{\rm NF} \hspace{0.05cm}, \hspace{2cm} T_{\rm opt} = {1}/{\sqrt{f_{\rm T} \cdot B_{\rm NF}}} \hspace{0.05cm}.$$

  • Ist die Zeitkonstante $T$ zu klein wie im linken Bereich obiger Skizze, so wird der Kondensator stets zu schnell entladen und die Differenz $w(t) – a(t)$ unnötig groß.
  • Auch ein zu großer Wert $T > T_{\rm opt}$ führt zu einer Verschlechterung, wie im rechten Signalausschnitt dargestellt. In diesem Fall kann $w(t)$ der Hüllkurve $a(t)$ nicht mehr folgen.


Bei einer $NF$–Bandbreite von 5 kHz sollte die Trägerfrequenz mindestens 500 kHz gewählt werden. Die Zeitkonstante $T$ muss sehr viel größer als $1/f_{\rm T} =$ 2 μs und gleichzeitig sehr viel kleiner als $1/B_{\rm NF} =$ 200 μs sein. Der optimale Wert entsprechend der Kompromissformel ist dann: $$T_{\rm opt} = {1}/{\sqrt{5 \cdot 10^5 \, {\rm Hz}\cdot 5 \cdot 10^3 \, {\rm Hz}}} = 20 \, \mu s \hspace{0.05cm}.$$