Aufgaben:Aufgabe 4.8Z: AWGN-Kanal: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Stochastische Signaltheorie/Linearkombinationen von Zufallsgrößen }} right| :Wir betrachten hier e…“)
 
Zeile 4: Zeile 4:
  
 
[[Datei:P_ID413__Sto_Z_4_8.png|right|]]
 
[[Datei:P_ID413__Sto_Z_4_8.png|right|]]
:Wir betrachten hier ein analoges Nachrichtensignal <i>s</i>(<i>t</i>), dessen Amplitudenwerte gau&szlig;verteilt sind. Der Effektivwert <i>&sigma;<sub>s</sub></i> dieses mittelwertfreien Signals beträgt 1 V. Diese Größe bezeichnet man auch als die Streuung.
+
:Wir betrachten hier ein analoges Nachrichtensignal $s(t)$, dessen Amplitudenwerte gaußverteilt sind. Der Effektivwert $\sigma_s$ dieses mittelwertfreien Signals beträgt 1 V. Diese Größe bezeichnet man auch als die Streuung.
  
:Bei der &Uuml;bertragung wird <i>s</i>(<i>t</i>) von einem St&ouml;rsignal <i>n</i>(<i>t</i>) additiv &uuml;berlagert, das ebenso wie <i>s</i>(<i>t</i>) als gau&szlig;verteilt und mittelwertfrei angenommen werden kann. Der Effektivwert (die Streuung) des Störsignals sei allgemein <i>&sigma;<sub>n</sub></i>. Es kann angenommen werden, dass zwischen Nutzsignal <i>s</i>(<i>t</i>) und Störsignal <i>n</i>(<i>t</i>) keine statistischen Abh&auml;ngigkeiten bestehen.
+
:Bei der Übertragung wird $s(t)$ von einem Störsignal $n(t)$ additiv überlagert, das ebenso wie $s(t)$ als gaußverteilt und mittelwertfrei angenommen werden kann. Der Effektivwert (die Streuung) des Störsignals sei allgemein $\sigma_n$. Es kann angenommen werden, dass zwischen Nutzsignal $s(t)$ und Störsignal $n(t)$ keine statistischen Abhängigkeiten bestehen.
  
:Man bezeichnet eine solche Konstellation als <i>Additive White Gaussian Noise</i> (AWGN) und verwendet als Qualit&auml;tskriterium für das Empfangssignal <i>r</i>(<i>t</i>) das Signal-zu-Störverh&auml;ltnis (Signal-to-Noise-Ratio):
+
:Man bezeichnet eine solche Konstellation als <i>Additive White Gaussian Noise</i> (AWGN) und verwendet als Qualitätskriterium für das Empfangssignal $r(t)$ das Signal-zu-Störverhältnis (Signal-to-Noise-Ratio):
 
:$${\rm SNR} = \frac {\sigma_s^2}{\sigma_n^2}.$$
 
:$${\rm SNR} = \frac {\sigma_s^2}{\sigma_n^2}.$$
  

Version vom 13. Oktober 2016, 20:21 Uhr

P ID413 Sto Z 4 8.png
Wir betrachten hier ein analoges Nachrichtensignal $s(t)$, dessen Amplitudenwerte gaußverteilt sind. Der Effektivwert $\sigma_s$ dieses mittelwertfreien Signals beträgt 1 V. Diese Größe bezeichnet man auch als die Streuung.
Bei der Übertragung wird $s(t)$ von einem Störsignal $n(t)$ additiv überlagert, das ebenso wie $s(t)$ als gaußverteilt und mittelwertfrei angenommen werden kann. Der Effektivwert (die Streuung) des Störsignals sei allgemein $\sigma_n$. Es kann angenommen werden, dass zwischen Nutzsignal $s(t)$ und Störsignal $n(t)$ keine statistischen Abhängigkeiten bestehen.
Man bezeichnet eine solche Konstellation als Additive White Gaussian Noise (AWGN) und verwendet als Qualitätskriterium für das Empfangssignal $r(t)$ das Signal-zu-Störverhältnis (Signal-to-Noise-Ratio):
$${\rm SNR} = \frac {\sigma_s^2}{\sigma_n^2}.$$
Hinweis: Die Aufgabe bezieht sich auf die theoretischen Grundlagen von Kapitel 4.2 und Kapitel 4.3.


Fragebogen

1

Geben Sie die WDF fr(r) des Empfangssignals r(t) allgemein an. Wie groß ist der Effektivwert σr, wenn σn = 0.75 V beträgt?

$\sigma_r$ =

V

2

Berechnen Sie den Korrelationskoeffizienten, der zwischen den beiden Signalen s(t) und r(t) besteht. Welcher Wert ergibt sich für σn = 0.75 V?

$\rho_\text{sr}$ =

3

Berechnen Sie ρsr abhängig von SNR. Leiten Sie eine Näherung für große SNR–Werte ab. Welcher Koeffizient ergibt sich für 10 · lg SNR = 30 dB?

$\rho_\text{sr}$ =


Musterlösung

1.  Es gilt r(t) = s(t) + n(t). Somit kann fr(r) aus der Faltung der beiden Dichtefunktionen fs(s) und fn(n) berechnet werden. Da beide Signale gaußverteilt sind, liefert die Faltung ebenfalls eine Gaußfunktion:
$$f_r(r)= \frac {1}{\sqrt{2 \pi} \cdot \sigma_r} \cdot {\rm e}^{-r^2/(2 \sigma_r^2)}.$$
Die Varianzen von s(t) und n(t) addieren sich. Deshalb erhält man mit σs = 1 V und σn = 0.75 V:
$$\sigma_r = \sqrt{\sigma_s^2 + \sigma_n^2} =\sqrt{{(\rm 1\hspace{0.1cm}V)^2} + {(\rm 0.75\hspace{0.1cm}V)^2}}\hspace{0.15cm}\underline{ = {\rm 1.25\hspace{0.1cm}V}}.$$
2.  Für den Korrelationskoeffizienten gilt mit dem gemeinsamen Moment msr:
$$\rho_{sr } = \frac{m_{sr }}{\sigma_s \cdot \sigma_r}.$$
Hierbei ist berücksichtigt, dass s(t) und auch r(t) mittelwertfrei sind, so dass μsr = msr gilt. Da s(t) und n(t) als statistisch unabhängig voneinander – und damit unkorreliert – vorausgesetzt wurden, gilt weiter:
$$m_{sr} = {\rm E}[s(t) \cdot r(t)] = {\rm E}[s^2(t)] + {\rm E}[s(t) \cdot n(t)] ={\rm E}[s^2(t)] = \sigma_s^2.$$
Daraus folgt:
$$\rho_{sr } = \frac{\sigma_s}{ \sigma_r} = \sqrt{\frac{\sigma_s^2}{\sigma_s^2 + \sigma_n^2}} = \left (1+ \frac{\sigma_n^2}{\sigma_s^2}\right)^{-1/2}.$$
Mit σs = 1 V, σn = 0.75 V und σr = 1.25 V erhält man ρsr = 0.8.
3.  Der in b) berechnete Ausdruck kann mit der Abkürzung SNR = σs2/σn2 wie folgt dargestellt werden:
$$\rho_{sr } = \frac{1}{ \sqrt{1 + \frac{1}{SNR}}} \approx \frac{1}{ {1 + \frac{1}{2 \cdot SNR}}} \approx 1 - \frac{1}{2 \cdot SNR}.$$
Der Signal-zu-Stör-Abstand 10 · lg(SNR) = 30 dB führt zum absoluten Wert SNR = 1000. In die obige Gleichung eingesetzt ergibt dies näherungsweise einen Korrelationskoeffizienten von 0.9995.