Aufgaben:Aufgabe 4.4Z: Zeigerdiagramm bei ESB-AM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Signaldarstellung/Analytisches Signal und zugehörige Spektralfunktion }} right| Betrachtet werd…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:P_ID732__Sig_Z_4_4_neu.png|right|]]
+
[[Datei:P_ID732__Sig_Z_4_4_neu.png|right|Zeigerdiagramm bei ESB-AM]]
 
Betrachtet werden soll das analytische Signal $s_+(t)$ mit dem Linienspektrum
 
Betrachtet werden soll das analytische Signal $s_+(t)$ mit dem Linienspektrum
 
:$$S_{+}(f) =  {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm
 
:$$S_{+}(f) =  {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm
 
50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f -
 
50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f -
 
f_{\rm 60}).$$
 
f_{\rm 60}).$$
Hierbei stehen $f_{50}$ und $f_{60}$ als Abkürzungen für die Frequenzen $50 \text{kHz}$ bzw. $60 \text{kHz}$.
+
Hierbei stehen $f_{50}$ und $f_{60}$ als Abkürzungen für die Frequenzen $50 \ \text{kHz}$ bzw. $60 \ \text{kHz}$.
  
Dieses analytische Signal könnte zum Beispiel bei der Einseitenband–Amplitudenmodulation (ESB-AM) eines sinusförmigen Nachrichtensignals (Frequenz $f_N = 10 \text{kHz}$) mit einem cosinusförmigen Trägersignal ($f_T = 50 \text{kHz}$) auftreten, wobei nur das obere Seitenband übertragen wird (OSB-Modulation).
+
Dieses analytische Signal könnte zum Beispiel bei der [[Modulationsverfahren/Einseitenbandmodulation|Einseitenband–Amplitudenmodulation]] (ESB-AM) eines sinusförmigen Nachrichtensignals (Frequenz $f_{\rm N} = 10 \ \text{kHz}$) mit einem cosinusförmigen Trägersignal ($f_{\rm T} = 50 \ \text{kHz}$) auftreten, wobei <u>nur das obere Seitenband</u> übertragen wird (''OSB-Modulation'').
  
Entsprechend den Ausführungen im [http://www.lntwww.de/Modulationsverfahren/Einseitenbandmodulation Kapitel 2.4] des Buches ''Modulationsverfahren'' könnte es aber auch durch eine USB-Modulation des gleichen Sinussignals entstehen, wenn ein sinusförmiges Trägersignal mit der Trägerfrequenz $f_T = 60 \text{kHz}$ verwendet wird.
+
Das analytische Signal könnte aber auch durch eine ''USB-Modulation'' des gleichen Sinussignals entstehen, wenn ein sinusförmiges Trägersignal mit der Trägerfrequenz $f_{\rm T} = 60 \ \text{kHz}$ verwendet wird.
  
<b>Hinweis:</b> Diese Aufgabe bezieht sich auf die theoretischen Grundlagen von [http://www.lntwww.de/Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion Kapitel 4.2]. <br>Sie können Ihre Lösung mit dem folgenden Interaktionsmodul überprüfen:<br>
+
''Hinweise:''
Zeigerdiagramm – Darstellung des analytischen Signals
+
*Die Aufgabe gehört zum  Kapitel [[Signaldarstellung/Analytisches_Signal_und_zugehörige_Spektralfunktion|Analytisches Signal und zugehörige Spektralfunktion]].
 +
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 +
*Sie können Ihre Lösung mit dem Interaktionsmodul [[Zeigerdiagramm – Darstellung des analytischen Signals]] überprüfen.
  
  

Version vom 20. Januar 2017, 14:13 Uhr

Zeigerdiagramm bei ESB-AM

Betrachtet werden soll das analytische Signal $s_+(t)$ mit dem Linienspektrum

$$S_{+}(f) = {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm 50})- {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot\delta (f - f_{\rm 60}).$$

Hierbei stehen $f_{50}$ und $f_{60}$ als Abkürzungen für die Frequenzen $50 \ \text{kHz}$ bzw. $60 \ \text{kHz}$.

Dieses analytische Signal könnte zum Beispiel bei der Einseitenband–Amplitudenmodulation (ESB-AM) eines sinusförmigen Nachrichtensignals (Frequenz $f_{\rm N} = 10 \ \text{kHz}$) mit einem cosinusförmigen Trägersignal ($f_{\rm T} = 50 \ \text{kHz}$) auftreten, wobei nur das obere Seitenband übertragen wird (OSB-Modulation).

Das analytische Signal könnte aber auch durch eine USB-Modulation des gleichen Sinussignals entstehen, wenn ein sinusförmiges Trägersignal mit der Trägerfrequenz $f_{\rm T} = 60 \ \text{kHz}$ verwendet wird.

Hinweise:


Fragebogen

1

Geben Sie das analytische Signal $s_+(t)$ formelmäßig an. Welcher Wert ergibt sich zum Startzeitpunkt $t = 0$?

$\text{Re}[s_+(t = 0)]$ =

$\text{V}$
$\text{Im}[s_+(t = 0)]$ = $-$

$\text{V}$

2

Zu welcher Zeit $t_1$ tritt der erste Nulldurchgang des physikalischen Signals $s(t)$ relativ zum ersten Nulldurchgang des $50 \text{kHz-Cosinussignals}$ auf? Hinweis: Letzterer ist zur Zeit $T_0/4 = 1/(4f_{50}) = 5 \mu s$.

Es gilt $t_1 < 5 \mu s$.
Es gilt $t_1 = 5 \mu s$.
Es gilt $t_1 > 5 \mu s$.

3

Welchen Maximalwert nimmt der Betrag $|s_+(t)|$ an? Zu welchem Zeitpunkt $t_2$ wird dieser Maximalwert zum ersten Mal erreicht?

$|s_+(t)|_{max}$ =

$\text{V}$
$t_2$ =

$\mu s$

4

Zu welchem Zeitpunkt $t_3$ ist die Zeigerlänge $|s_+(t)|$ erstmalig gleich $0$?

$t_3$ =

$\mu s$


Musterlösung

1. Das analytische Signal lautet allgemein:

$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 50}\hspace{0.05cm} t } - {\rm j}\cdot{\rm 1 \hspace{0.05cm} V} \cdot {\rm e}^{{\rm j}\hspace{0.05cm} \omega_{\rm 60} \hspace{0.05cm} t }.$$

Zum Zeitpunkt $t = 0$ nehmen die komplexen Exponentialfunktionen jeweils den Wert $1$ an und man erhält $\underline{\text{Re}[s_+(t = 0)] = 1V}$ und $\underline{\text{Im}[s_+(t = 0)] = –1V}$ (siehe linke Grafik).

P ID733 Sig Z 4 4 ML.png

2. Für das analytische Signal kann auch geschrieben werden:

$$s_{+}(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm j} \cdot{\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 50}\hspace{0.05cm} t })+\\ - {\rm j} \cdot {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 60}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).$$

Der Realteil hiervon beschreibt das tatsächliche, physikalische Signal:

$$s(t) = {\rm 1 \hspace{0.05cm} V} \cdot \cos({ \omega_{\rm 50}\hspace{0.05cm} t }) + {\rm 1 \hspace{0.05cm} V} \cdot \sin({ \omega_{\rm 60}\hspace{0.05cm} t }).$$

Bei alleiniger Berücksichtigung des 50 kHz-Cosinussignals würde der erste Nulldurchgang bei $t_1 = T_0/4$ auftreten, also nach $5 \mu s$, wobei $T_0 = 1/f_{50} = 20 \mu s$ die Periodendauer des 50 kHz-Signals bezeichnet. Das Sinussignal mit der Frequenz 60 kHz ist während der gesamten ersten Halbwelle ($0 ... 8.33\ \mu s$) positiv. Aufgrund des Pluszeichens verzögert sich der erste Nulldurchgang von $s(t) \Rightarrow t_1 > 5\ \mu s$. Richtig ist also der Lösungsvorschlag 3.

Die mittlere Grafik zeigt das analytische Signal zum Zeitpunkt $t = T_0/4$, zu dem der rote Träger seinen Nulldurchgang hätte. Der Nulldurchgang des violetten Summenzeigers tritt erst dann auf, wenn dieser in Richtung der imaginären Achse zeigt. Dann gilt $s(t_1) = \text{Re}[s_+(t_1)] = 0$.

3. Der Maximalwert von $|s_+(t)|$ wird erreicht, wenn beide Zeiger in die gleiche Richtung weisen. Der Betrag des Summenzeigers ist dann gleich der Summe der beiden Einzelzeiger; also $2\ V$.

Dieser Fall wird zum ersten Mal dann erreicht, wenn der schnellere Zeiger mit der Winkelgeschwindigkeit $\omega_{60}$ seinen „Rückstand” von $90°\ (\pi /2)$ gegenüber dem langsameren Zeiger ($\omega_{50}$) aufgeholt hat:

$$\omega_{\rm 60}\hspace{0.05cm} t_2 - \omega_{\rm 50}\hspace{0.05cm} t_2 = \frac{\pi}{2} \hspace{0.3cm} \Rightarrow\hspace{0.3cm}t_2 = \frac{\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} = \frac{1}{4 \cdot(f_{\rm 60}- f_{\rm 50})}\hspace{0.15 cm}\underline{= {\rm 25 \hspace{0.05cm} \mu s}}.$$

Zu diesem Zeitpunkt haben die beiden Zeiger $5/4$ bzw. $6/4$ Umdrehungen zurückgelegt und weisen beide in Richtung der imaginären Achse (siehe rechte Grafik). Das tatsächliche Signal $s(t)$ – also der Realteil von $s_+(t)$ – ist deshalb in diesem Moment gleich $0$.

4. Die Bedingung für $|s_+(t_3)| = 0$ ist, dass zwischen den beiden gleich langen Zeigern ein Phasenversatz von $180°$ besteht, sodass sie sich auslöschen. Dies bedeutet weiter, dass der schnellere Zeiger um $3\pi /2$ weiter gedreht hat als der $50$ kHz-Anteil. Analog zur Musterlösung der Teilaufgabe 3) gilt deshalb:

$$t_3 = \frac{3\pi/2}{2\pi (f_{\rm 60}- f_{\rm 50})} \hspace{0.15 cm}\underline{= {\rm 75 \hspace{0.05cm} \mu s}}.$$