Aufgaben:Aufgabe 3.10: Transinformation beim BSC: Unterschied zwischen den Versionen
Safwen (Diskussion | Beiträge) |
Safwen (Diskussion | Beiträge) |
||
Zeile 4: | Zeile 4: | ||
[[Datei:P_ID2787__Inf_A_3_9.png|right|]] | [[Datei:P_ID2787__Inf_A_3_9.png|right|]] | ||
− | Wir betrachten den $Binary | + | Wir betrachten den $\text{Binary Symmetric Channel}$ (BSC). Für die gesamte Aufgabe gelten die Parameterwerte: |
:* Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$ | :* Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$ | ||
:* Wahrscheinlichkeit für $0$: $p_0 = 0.2$, | :* Wahrscheinlichkeit für $0$: $p_0 = 0.2$, |
Version vom 27. November 2016, 18:01 Uhr
Wir betrachten den $\text{Binary Symmetric Channel}$ (BSC). Für die gesamte Aufgabe gelten die Parameterwerte:
- Verfälschungswahrscheinlichkeit: $\epsilon = 0.1$
- Wahrscheinlichkeit für $0$: $p_0 = 0.2$,
- Wahrscheinlichkeit für $1$: $p_1 = 0.8$.
Damit lautet die Wahrscheinlichkeitsfunktion der Quelle:
$P_X(X)= (0.2 , 0.8)$
und für die Quellenentropie gilt:
$H(X) = p_0 \cdot log_2 \frac{1}{p_0} + p_1 \cdot log_2 \frac{1}{p_1} = H_{bin}(0.2) = 0.7219 (bit)$
In der Aufgabe sollen ermittelt werden:
- die Wahrscheinlichkeitsfunktion der Sinke:
$P_Y(Y) = (P_Y(0) , P_Y(1))$,
- die Verbundwahrscheinlichkeitsfunktion :
$P_{XY}(X, Y) = \begin{pmatrix} p_{00} & p_{01}\\ p_{10} & p_{11} \end{pmatrix} \hspace{0.05cm}$
- die Transinformation
$I(X;Y) = E[ log_2 \frac{P_{ XY }(X,Y)}{P_X(X) . P_Y(Y)}]$,
- die Äquivokation:
$H(X \mid Y) = E[log_2 \frac{1}{P_{ X \mid Y }(X \mid Y)}]$,
- die Irrelevanz:
$H(Y \mid X) = E[log_2 \frac{1}{P_{ Y \mid X }(Y \mid X)}]$
Hinwies: Die Aufgabe gehört zu Kapitel 3.3. In der Aufgabe Z3.9 wird die Kanalkapazität $C_{ BSC }$ des $BSC$–Modells berechnet. Diese ergibt sich als die maximale Transinformation $I(X; Y)$ durch Maximierung bezüglich der Symbolwahrscheinlichkeiten $p_0$ bzw. $p_1 = 1 – p_0$.
Fragebogen
Musterlösung
$P_{ XY }(0 , 0) = p_0 . (1 - \varepsilon ) = 0.18 $ , $P_{XY}(0,1) = p_0 . \varepsilon = 0.02$,
$P_{XY}(1,0) = p_1 . \varepsilon = 0.08$ , $P_{ XY }(1 , 1) = p_1 . (1 - \varepsilon ) = 0.72$.
2. Es gilt:
$P_Y(Y) = ( Pr(Y = 0) , Pr(Y = 1)) = (p_0 ,p_1 ) . 3. 4. 5. 6. 7.