Aufgaben:Aufgabe 2.5Z: Lineare Verzerrungen bei ZSB-AM: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
(Die Seite wurde neu angelegt: „ {{quiz-Header|Buchseite=Modulationsverfahren/Synchrondemodulation }} [[Datei:|right|]] ===Fragebogen=== <quiz display=simple> {Multiple-Choice Frage |type…“)
 
Zeile 3: Zeile 3:
 
}}
 
}}
  
[[Datei:|right|]]
+
[[Datei:P_ID1013__Mod_Z_2_5.png|right|]]
 +
Auch in dieser Zusatzaufgabe wird wie in A2.5 die Kombination ZSB–AM/Synchrondemodulator bei Berücksichtigung eines linear verzerrenden Kanals untersucht.
 +
 
 +
Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $A_N$ und Frequenz $f_N$, so dass das Spektrum des modulierten Signals wie folgt lautet:
 +
$$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$
 +
Die Abkürzungen stehen für $f_O = f_T + f_N$ (oberes Seitenband) und $f_U = f_T – f_N$ (unteres Seitenband). Der Kanalfrequenzgang ist nur für diese beiden Frequenzen gegeben und lautet:
 +
$$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$
 +
Für negative Frequenzen gilt stets $H_K(– f) = H_K*(f)$.
 +
 
 +
Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte:
 +
$$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$
 +
$$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$
 +
In der Teilaufgabe c) soll die Lösung über den resultierenden Frequenzgang von Modulator, Kanal und Demodulator erfolgen:
 +
$$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$
 +
Abschließend wird in der Teilaufgabe d) der folgende Kanalfrequenzgang betrachtet (die Darstellung gilt nur für positive Frequenzen):
 +
$$ H_{\rm K}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$
 +
'''Hinweis:''' Diese Aufgabe bezieht sich auf den Theorieteil von [http://www.lntwww.de/Modulationsverfahren/Synchrondemodulation Kapitel 2.2]. 
  
  

Version vom 30. Dezember 2016, 19:27 Uhr

P ID1013 Mod Z 2 5.png

Auch in dieser Zusatzaufgabe wird wie in A2.5 die Kombination ZSB–AM/Synchrondemodulator bei Berücksichtigung eines linear verzerrenden Kanals untersucht.

Das Quellensignal $q(t)$ sei ein Cosinussignal mit Amplitude $A_N$ und Frequenz $f_N$, so dass das Spektrum des modulierten Signals wie folgt lautet: $$S(f)= \frac{A_{\rm N}}{4} \cdot \left[\delta(f + f_{\rm O}) + \delta(f + f_{\rm U}) + \delta(f - f_{\rm U}) + \delta(f - f_{\rm O}) \right]\hspace{0.05cm}.$$ Die Abkürzungen stehen für $f_O = f_T + f_N$ (oberes Seitenband) und $f_U = f_T – f_N$ (unteres Seitenband). Der Kanalfrequenzgang ist nur für diese beiden Frequenzen gegeben und lautet: $$ H_{\rm K}(f_{\rm O}) = R_{\rm O} + {\rm j} \cdot I_{\rm O},\hspace{0.2cm}H_{\rm K}(f_{\rm U}) = R_{\rm U} + {\rm j} \cdot I_{\rm U} \hspace{0.05cm}.$$ Für negative Frequenzen gilt stets $H_K(– f) = H_K*(f)$.

Verwenden Sie bei numerischen Berechnungen folgende Zahlenwerte: $$A_{\rm N} = 2\,{\rm V}, \hspace{0.15cm}f_{\rm N} = 3\,{\rm kHz}, \hspace{0.15cm}f_{\rm T} = 30\,{\rm kHz} \hspace{0.05cm},$$ $$R_{\rm U} = 0.8, \hspace{0.15cm}I_{\rm U} = -0.2, \hspace{0.15cm}R_{\rm O} = 0.4, \hspace{0.15cm}I_{\rm O} = -0.2 \hspace{0.05cm}.$$ In der Teilaufgabe c) soll die Lösung über den resultierenden Frequenzgang von Modulator, Kanal und Demodulator erfolgen: $$H_{\rm MKD}(f) = {1}/{2} \cdot \left[ H_{\rm K}(f + f_{\rm T}) + H_{\rm K}(f - f_{\rm T})\right]\hspace{0.05cm}.$$ Abschließend wird in der Teilaufgabe d) der folgende Kanalfrequenzgang betrachtet (die Darstellung gilt nur für positive Frequenzen): $$ H_{\rm K}(f) = \frac{1}{1 + 3{\rm j} \cdot ({f}/{f_{\rm T}} - 1)}\hspace{0.05cm}.$$ Hinweis: Diese Aufgabe bezieht sich auf den Theorieteil von Kapitel 2.2.


Fragebogen

1

Multiple-Choice Frage

Falsch
Richtig

2

Input-Box Frage

$\alpha$ =


Musterlösung

1. 2. 3. 4. 5. 6. 7.