Aufgaben:Aufgabe 3.1Z: Spektrum des Dreieckimpulses: Unterschied zwischen den Versionen
Zeile 31: | Zeile 31: | ||
− | {Geben Sie die Spektralfunktion $ | + | {Geben Sie die Spektralfunktion ${X(f)}$ unter Verwendung der Spaltfunktion $\text{si}(x) = \sin(x)/x$ an. Welcher Wert ergibt sich bei der Frequenz $f = 0$? |
|type="{}"} | |type="{}"} | ||
− | $X(f = 0)$ = { 1 3% } $ | + | $X(f = 0)$ = { 1 3% } $\text{mV/Hz}$ |
− | {Bei welcher Frequenz $f = f_0$ hat das Spektrum $ | + | {Bei welcher Frequenz $f = f_0$ hat das Spektrum ${X(f)}$ die erste Nullstelle? |
|type="{}"} | |type="{}"} | ||
− | $f_0$ = { 1 3% } $\text{kHz}$ | + | $f_0$ = { 1 3% } $\text{kHz}$ |
− | {Welche der | + | {Welche der beiden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
+ Bei allen Vielfachen von $f_0$ hat das Spektrum Nullstellen. | + Bei allen Vielfachen von $f_0$ hat das Spektrum Nullstellen. | ||
- Bei der Frequenz $f = 1.5 \cdot f_0$ ist die Spektralfunktion negativ. | - Bei der Frequenz $f = 1.5 \cdot f_0$ ist die Spektralfunktion negativ. | ||
− | |||
− | |||
</quiz> | </quiz> |
Version vom 16. Januar 2017, 16:11 Uhr
Betrachtet wird ein Dreieckimpuls ${x(t)}$, der im Bereich $–T ≤ t ≤ T$ durch folgende Gleichung beschrieben wird:
- $$x(t) = A \cdot \left( {1 - \frac{\left| \hspace{0.05cm}t \hspace{0.05cm}\right|}{T}} \right).$$
Die Impulsamplitude sei $A = 1\, \text{V}$, der Zeitparameter $T = 1 \text{ms}$. Für alle Zeiten $| t | > T$ ist ${x(t)} = 0$.
Zur Berechnung der Spektralfunktionen ${X(f)}$ können Sie folgende Eigenschaften ausnutzen:
- Die Zeitfunktion ist gerade und damit die Spektralfunktion reell:
- $$X\left( f \right) = \int_{ - \infty }^{ + \infty } {x(t)} \cdot {\rm e}^{{\rm j}2\pi ft} {\rm d}t = 2 \cdot \int_0^{ \infty } {x(t)} \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
- Für $| t | > T$ besitzt ${x(t)}$ keine Anteile:
- $$X\left( f \right) = 2 \cdot \int_0^T {x(t)} \cdot \cos \left( {2\pi ft} \right){\rm d}t.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Fouriertransformation und -rücktransformation.
- Weitere Informationen zu dieser Thematik liefert das Lernvideo Unterschiede und Gemeinsamkeiten von kontinuierlichen und diskreten Spektren.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Zur Lösung dieser Aufgabe können Sie auf die folgenden Formeln zurückgreifen:
- $$\int {t \cdot \cos \left( {\omega _0 t} \right){\rm d}t = \frac{{\cos \left( {\omega _0 t} \right)}}{\omega _0 ^2 }} + \frac{{t \cdot \sin \left( {\omega _0 t} \right)}}{\omega _0 }, \hspace{0.5cm} \sin ^2 \left( \alpha \right) = {1}/{2} \cdot \left( {1 - \cos \left( {2\alpha } \right)} \right).$$
Fragebogen
Musterlösung
- $$X(f) = 2A \cdot \int_0^T {\left( {1 - \frac{t}{T}} \right)} \cdot \cos \left( {\omega t} \right){\rm d}t.$$
Dieses Integral setzt sich aus zwei Anteilen zusammen:
- $$X_1 (f) = 2A \cdot \int_0^T {\cos } \left( {\omega t} \right){\rm d}t = \frac{2A}{\omega } \cdot \sin \left( {\omega T} \right),$$
- $$X_2 (f) = - \frac{2A}{T} \cdot \int_0^T {t \cdot \cos } \left( {\omega t} \right){\rm d}t = - \frac{2A}{T} \cdot \left. {\left[ {\frac{{\cos \left( {\omega t} \right)}}{\omega ^2 } + \frac{{t \cdot \sin \left( {\omega t} \right)}}{\omega }} \right]} \right|_0^T .$$
Unter Berücksichtigung von oberer und unterer Grenze erhält man:
- $$X_2 \left( f \right) = - \frac{2A}{T} \cdot \left[ {\frac{{\cos \left( {\omega T} \right)}}{\omega ^2 } - \frac{1}{\omega ^2 } + \frac{{T \cdot \sin \left( {\omega T} \right)}}{\omega }} \right].$$
Addiert man die beiden Anteile, so ergibt sich:
- $$X(f) = \frac{2A}{\omega ^2 \cdot T}\left[ {1 - \cos \left( {\omega T} \right)} \right] = \frac{A}{2\pi ^2 f^2 T} \cdot \left[ {1 - \cos \left( {2\pi fT} \right)} \right].$$
Bei der Frequenz $f = 1/(2T) = 500 \text{Hz}$ ist das Argument der Cosinusfunktion gleich $\pi$ und damit die Cosinusfunktion selbst gleich $–1$. Daraus folgt:
- $$X( {f = \frac{1}{2T} = 500\;{\rm Hz}} ) = \frac{4}{\pi^2} \cdot A \cdot T = \frac{4}{\pi^2} \cdot 1\;{\rm V} \cdot 10^{ - 3}\;{\rm s}\hspace{0.15 cm}\underline{= 0.405 \cdot 10^{ - 3} \;{\rm V/Hz}}.$$
2. Mit der trigonometrischen Umformung
- $${1}/{2} \cdot (1 - \cos (2 \alpha)) = \sin^2(\alpha)$$
erhält man für die Spektralfunktion:
- $$X(f) = A \cdot T \cdot \frac{\sin^2(\pi f T)}{\pi^2 \cdot {f^2 \cdot T^2}} = A \cdot T \cdot {{{\rm si}^2(\pi f T)}}.$$
Bei der Frequenz $f = 0$ ist die si-Funktion gleich $1$. Daraus folgt:
- $$X( {f = 0} ) = A \cdot T \hspace{0.15 cm}\underline{= 10^{ - 3} \;{\rm V/Hz}}.$$
3. Die erste Nullstelle tritt auf, wenn das Argument der si-Funktion gleich $\pi$ ist. Daraus folgt $f_0 \cdot T = 1$ bzw. $f_0 = 1/T \underline{= 1 \text{kHz}}$.
4. Die Spektralfunktion $\text{X(f)}$ ist bei Vielfachen von $f_0$ ($f = n \cdot f_0$) gleich $si^2(n \cdot \pi) = 0$. Die erste Aussage trifft also zu im Gegensatz zur zweiten: Bei keiner Frequenz $f$ ist $\text{X(f)} < 0$ (siehe Skizze).