Aufgaben:Aufgabe 3.8Z: Kreis(ring)fläche: Unterschied zwischen den Versionen
Zeile 36: | Zeile 36: | ||
− | {Welcher Wert $m_{ | + | {Welcher Wert $m_{ A} = {\rm E}[A]$ ergibt sich für die „mittlere” Kreisfläche? |
|type="{}"} | |type="{}"} | ||
− | $m_{ | + | $m_{ A} \ = $ { 154.98 3% } |
Zeile 65: | Zeile 65: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | + | '''(1)''' Die Gleichung der Kreisfläche ist gleichzeitig die Transformationskennlinie: $A = \pi \cdot r^2$. Daraus ergibt sich mit $r = 6$ für den Minimalwert: $A_\text{min} \hspace{0.15cm}\underline {= 113.09}$. | |
− | |||
− | |||
− | + | '''(2)''' Entsprechend gilt mit $r = 8$ für den Maximalwert: $A_\text{max} \hspace{0.15cm}\underline {= 201.06}$. | |
− | |||
− | :Mit | + | |
− | + | '''(3)''' Am einfachsten löst man diese Aufgabe wie folgt: | |
+ | $$m_{A}={\rm E}[A]={\rm E}[g(r)]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$ | ||
+ | |||
+ | Mit $g(r) = \pi \cdot r^2$ und $f_r(r) = 1/2$ im Bereich von $6$ ... $8$ erhält man: | ||
+ | $$m_{A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3) | ||
\hspace{0.15cm}\underline{=\rm 154.98}.$$ | \hspace{0.15cm}\underline{=\rm 154.98}.$$ | ||
− | |||
− | |||
− | :Im Bereich zwischen 113.09 und 201.06 | + | '''(4)''' Die WDF der transformierten Zufallsgröße $A$ lautet: |
− | + | $$f_A(A)=\frac{f_r(r)}{|g'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$ | |
+ | |||
+ | Im Bereich zwischen $A_\text{min} {= 113.09}$ und $A_\text{max} {= 201.06}$ gilt dann: | ||
+ | $$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$ | ||
+ | |||
+ | Die gesuchte Wahrscheinlichkeit erhält man durch Integration: | ||
+ | $${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$ | ||
− | + | Die obere Integrationsgrenze liefert den Wert $4$ und die untere Grenze $3.455$. Daraus ergibt sich die gesuchte Wahrscheinlichkeit ${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=0.545}$. | |
− | |||
− | |||
− | + | '''(5)''' Für die Kreisringfläche $R$ gilt bei gegebenem Radius $r$: | |
− | + | $$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$ | |
− | + | Zwischen $R$ und $r$ besteht also ein linearer Zusammenhang. Das heißt, $R$ ist ebenfalls gleichverteilt und zwar unabhängig von der Breite $b$, solange $b \ll r$ ist. Für den Minimalwert gilt: | |
− | + | $$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$ | |
− | + | '''(6)''' Entsprechend ist der Maximalwert: | |
− | + | $$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$ | |
− | + | '''(7)''' Aufgrund des linearen Zusammenhangs zwischen $R$ und $r$ führt der mittlere Radius $r = 7$ auch zur mittleren Kreisringfläche: | |
− | + | $${\rm E}[R]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$ | |
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 14. März 2017, 16:23 Uhr
Wir betrachten unterschiedlich große Kreise:
- Der Radius $r$ und die Fläche $A$ lassen sich als Zufallsgrößen auffassen, die voneinander abhängen.
- Es wird vorausgesetzt, dass der Radius auf den Bereich $6 \le r \le 8$ beschränkt ist.
In der oberen Skizze ist der Bereich, in dem solche Kreise (alle mit Mittelpunkt im Koordinatenursprung) liegen können, gelb markiert. Weiterhin kann davon ausgegangen werden, dass der Radius in diesem Intervall gleichverteilt ist: $$f_r(r)=\left\{ \begin{array}{*{4}{c}} 0.5 & \rm f\ddot{u}r\hspace{0.2cm}{\rm 6\le \it r \le \rm 8}, \\\rm 0 & \rm sonst. \end{array} \right.$$
Ab der Teilaufgabe (5) werden schmale Kreisringe mit dem Mittelradius $r$ und der Breite $b$ betrachtet (untere Skizze):
- Die Fläche eines solchen Kreisrings wird mit $R$ bezeichnet.
- Die möglichen Mittelradien $r$ seien wieder gleichverteilt zwischen $6$ und $8$, und die Kreisringbreite beträgt $b = 0.1$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Exponentialverteilte Zufallsgröße.
- Insbesondere wird Bezug genommen auf die Seite Transformation von Zufallsgrößen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
(2) Entsprechend gilt mit $r = 8$ für den Maximalwert: $A_\text{max} \hspace{0.15cm}\underline {= 201.06}$.
(3) Am einfachsten löst man diese Aufgabe wie folgt:
$$m_{A}={\rm E}[A]={\rm E}[g(r)]=\int_{ -\infty}^{+\infty}g(r)\cdot f_r(r) {\rm d}r.$$
Mit $g(r) = \pi \cdot r^2$ und $f_r(r) = 1/2$ im Bereich von $6$ ... $8$ erhält man: $$m_{A}=\int_{\rm 6}^{\rm 8}1/2 \cdot\pi\cdot r^{\rm 2}\, {\rm d} \it r=\frac{\pi}{\rm 6}\cdot \rm ( 8^3-6^3) \hspace{0.15cm}\underline{=\rm 154.98}.$$
(4) Die WDF der transformierten Zufallsgröße $A$ lautet:
$$f_A(A)=\frac{f_r(r)}{|g'(r)|}\Bigg|_{r=h(y) = \sqrt{A/ \pi }}.$$
Im Bereich zwischen $A_\text{min} {= 113.09}$ und $A_\text{max} {= 201.06}$ gilt dann: $$f_A(A)=\frac{\rm 1/2}{\rm 2\cdot \pi\cdot\it r}\Bigg|_{\it r=\sqrt{\it A/\rm \pi}}=\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}}.$$
Die gesuchte Wahrscheinlichkeit erhält man durch Integration: $${\rm Pr}(A> 150)=\int_{\rm 150}^{\it A_{\rm max}}\frac{\rm 1}{\rm 4\cdot\sqrt{\it A\cdot\rm \pi}} \; \rm d \it A= \frac{\rm 2\cdot\sqrt{\it A}}{\rm 4\cdot\sqrt{\pi}}\Big|_{\rm 150}^{\it A_{\rm max}}.$$
Die obere Integrationsgrenze liefert den Wert $4$ und die untere Grenze $3.455$. Daraus ergibt sich die gesuchte Wahrscheinlichkeit ${\rm Pr}(A> 150) \hspace{0.15cm}\underline {=0.545}$.
(5) Für die Kreisringfläche $R$ gilt bei gegebenem Radius $r$:
$$R=\left (r+{b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi-\left ({\it r}-{\it b}/{\rm 2} \right)^{\rm 2}\cdot \rm\pi= \rm2\cdot\pi\cdot\it r \cdot b.$$
Zwischen $R$ und $r$ besteht also ein linearer Zusammenhang. Das heißt, $R$ ist ebenfalls gleichverteilt und zwar unabhängig von der Breite $b$, solange $b \ll r$ ist. Für den Minimalwert gilt: $$R_{\rm min}=\rm 2\pi\cdot 6\cdot 0.1\hspace{0.15cm}\underline{\approx3.77}. $$
(6) Entsprechend ist der Maximalwert: $$R_{\rm max}=\rm 2\pi\cdot 8\cdot 0.1\hspace{0.15cm}\underline{\approx 5.03}.$$
(7) Aufgrund des linearen Zusammenhangs zwischen $R$ und $r$ führt der mittlere Radius $r = 7$ auch zur mittleren Kreisringfläche: $${\rm E}[R]=\rm 2\pi\cdot 7\cdot 0.1\hspace{0.15cm}\underline{\approx 4.4}.$$