Aufgaben:Aufgabe 4.7: Gewichtete Summe und Differenz: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 11: | Zeile 11: | ||
Hierbei bezeichnen $A$ und $B$ (beliebige) konstante Werte. | Hierbei bezeichnen $A$ und $B$ (beliebige) konstante Werte. | ||
− | *Für die Teilaufgaben (1) bis (4) gelte $m= 0$, $\sigma | + | *Für die Teilaufgaben (1) bis (4) gelte $m= 0$, $\sigma = 1$, $A = 1$ und $B = 2$. |
− | *Bei der Teilaufgabe (5) wird vorausgesetzt, dass $u$ und $v$ jeweils gaußverteilt mit Mittelwert $m= 1$ und Streuung $\sigma | + | *Bei der Teilaufgabe (5) wird vorausgesetzt, dass $u$ und $v$ jeweils gaußverteilt mit Mittelwert $m= 1$ und Streuung $\sigma = 0.5$ seien. Für die Konstanten gelte $A = B = 1$. |
− | *Für die Aufgabe (6) seien die Zufallsgrößen $u$ und $v$ symmetrisch zweipunktverteilt auf $\pm$1: | + | *Für die Aufgabe (6) gelte weiterhin $A = B = 1$. hier seien die Zufallsgrößen $u$ und $v$ symmetrisch zweipunktverteilt auf $\pm$1: |
:$${\rm Pr}(u=1) = {\rm Pr}(u=-1) = {\rm Pr}(v=1) = {\rm Pr}(v=-1) =0.5.$$ | :$${\rm Pr}(u=1) = {\rm Pr}(u=-1) = {\rm Pr}(v=1) = {\rm Pr}(v=-1) =0.5.$$ | ||
− | + | ||
''Hinweise:'' | ''Hinweise:'' | ||
Zeile 26: | Zeile 26: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie groß sind Mittelwert und Streuung von | + | {Wie groß sind Mittelwert und Streuung von $x$ für $A = 1$ und $B = 2$? |
|type="{}"} | |type="{}"} | ||
− | $m_x$ | + | $m_x \ = $ { 0. } |
− | $\sigma_x$ | + | $\sigma_x \ = $ { 2.236 3% } |
− | {Wie groß sind Mittelwert und Streuung von | + | {Wie groß sind Mittelwert und Streuung von $y$ für $A = 1$ und $B = 2$? |
|type="{}"} | |type="{}"} | ||
− | $m_y$ | + | $m_y \ = $ { 0. } |
− | $\ | + | $\sigma_x \ = $ { 2.236 3% } |
− | {Berechnen Sie die Kovarianz. Welcher Wert ergibt sich für | + | {Berechnen Sie die Kovarianz $\mu_{xy}$. Welcher Wert ergibt sich für $A = 1$ und $B = 2$? |
|type="{}"} | |type="{}"} | ||
− | $\mu_ | + | $\mu_{xy} \ = $ { -3.09--2.91 } |
− | {Berechnen Sie den Korrelationskoeffizienten | + | {Berechnen Sie den Korrelationskoeffizienten $\rho_{xy}$ in Abhängigkeit des Quotienten $B/A$. Welcher Koeffizient ergibt sich für $A = 1$ und $B = 2$? |
|type="{}"} | |type="{}"} | ||
− | $\rho_ | + | $\rho_{xy}\ = $ { -0.618--0.582 } |
{Welche der folgenden Aussagen gelten immer? | {Welche der folgenden Aussagen gelten immer? | ||
|type="[]"} | |type="[]"} | ||
− | + Für | + | + Für $B = 0$ sind die Zufallsgrößen $x$ und $y$ streng korreliert. |
− | - Es gilt | + | - Es gilt $\rho_{xy}(-B/A) = -\rho_{xy}(B/A)$. |
− | + Im Grenzfall | + | + Im Grenzfall $B/A \to \infty$ sind die Zufallsgrößen $x$ und $y$ streng korreliert. |
− | + Für | + | + Für $A =B$ sind die Zufallsgrößen $x$ und $y$ unkorreliert. |
− | {Welche Aussagen sind zutreffend, wenn | + | {Welche Aussagen sind zutreffend, wenn $A =B = 1$ gilt und $u$ und $v$ jeweils gaußverteilt sind mit Mittelwert $m = 1$ und Streuung $\sigma = 0.5$? |
|type="[]"} | |type="[]"} | ||
− | + Die Zufallsgrößen | + | + Die Zufallsgrößen $x$ und $y$ sind unkorreliert. |
− | + Die Zufallsgrößen | + | + Die Zufallsgrößen $x$ und $y$ sind statistisch unabhängig. |
− | {Welche Aussagen treffen zu, wenn | + | {Welche Aussagen treffen zu, wenn $u$ und $v$ symmetrisch zweipunktverteilt sind und $A =B = 1$ gilt? |
|type="[]"} | |type="[]"} | ||
− | + Die Zufallsgrößen | + | + Die Zufallsgrößen $x$ und $y$ sind unkorreliert. |
− | + Die Zufallsgrößen | + | + Die Zufallsgrößen $x$ und $y$ sind statistisch unabhängig. |
Version vom 22. März 2017, 13:53 Uhr
Die Zufallsgrößen $u$ und $v$ seien statistisch voneinander unabhängig, jeweils mit Mittelwert $m$ und Varianz $\sigma^2$. Beide Größen besitzen gleiche WDF und VTF. Über den Verlauf dieser Funktionen sei zunächst nichts bekannt.
Es werden nun zwei neue Zufallsgrößen $x$ und $y$ entsprechend den nachfolgenden Gleichungen gebildet:
- $$x = A \cdot u + B \cdot v,$$
- $$y= A \cdot u - B \cdot v.$$
Hierbei bezeichnen $A$ und $B$ (beliebige) konstante Werte.
- Für die Teilaufgaben (1) bis (4) gelte $m= 0$, $\sigma = 1$, $A = 1$ und $B = 2$.
- Bei der Teilaufgabe (5) wird vorausgesetzt, dass $u$ und $v$ jeweils gaußverteilt mit Mittelwert $m= 1$ und Streuung $\sigma = 0.5$ seien. Für die Konstanten gelte $A = B = 1$.
- Für die Aufgabe (6) gelte weiterhin $A = B = 1$. hier seien die Zufallsgrößen $u$ und $v$ symmetrisch zweipunktverteilt auf $\pm$1:
- $${\rm Pr}(u=1) = {\rm Pr}(u=-1) = {\rm Pr}(v=1) = {\rm Pr}(v=-1) =0.5.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Linearkombinationen von Zufallsgrößen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- 1. Da die Zufallsgrößen u und υ mittelwertfrei sind (m = 0), ist auch die Zufallsgröße x mittelwertfrei: mx = (A + B) · m = 0. Für die Varianz und die Streuung gelten:
- $$\sigma_x^2 = (A^2 +B^2) \cdot \sigma^2 = 5; \hspace{0.5cm} \sigma_x = \sqrt{5}\hspace{0.15cm}\underline{ \approx 2.236}.$$
- 2. Da u und υ die gleiche Streuung besitzen, gilt auch σy = σx ≈ 2.236. Wegen m = 0 gilt zudem my = 0. Bei mittelwertbehafteten Zufallsgrößen u und υ ergäbe sich für my = (A – B) · m dagegen ein anderer Wert als für mx = (A + B) · m.
- 3. Wir gehen hier von dem allgemeineren Fall m ≠ 0 aus. Dann gilt für das gemeinsame Moment:
- $$m_{xy} = {\rm E} [x \cdot y ] = {\rm E} [(A \cdot u + B \cdot v) (A \cdot u - B \cdot v)] . $$
- Nach den allgemeinen Rechenregeln für Erwartungswerte folgt daraus:
- $$m_{xy} = A^2 \cdot {\rm E} [u^2 ] - B^2 \cdot {\rm E} [v^2 ] = (A^2 - B^2)(m^2 + \sigma^2).$$
- Die Kovarianz ergibt sich dann zu
- $$\mu_{xy} = m_{xy} - m_{x} \cdot m_{y}= \\ = (A^2 - B^2)(m^2 + \sigma^2) - (A + B)(A-B) \cdot m^2 = (A^2 - B^2) \cdot \sigma^2.$$
- Mit A = 1, B = 2, σ = 1 erhält man μxy = –3, unabhängig vom Mittelwert m der Größen u und υ.
- 4. Der Korrelationskoeffizient ergibt sich zu
- $$\rho_{xy} =\frac{\mu_{xy}}{\sigma_x \cdot \sigma_y} = \frac{(A^2 - B^2) \cdot \sigma^2}{(A^2 +B^2) \cdot \sigma^2} $$
- $$\Rightarrow \rho_{xy} =\frac{1 - (B/A)^2} {1 +(B/A)^2}.$$
- Mit B/A = 2 folgt daraus ρxy = –0.6.
- 5. Aus B = 0 folgt ρxy = 1 (strenge Korrelation). Aus den Gleichungen für x und y erkennt man weiter, dass in diesem Fall x und y identische Zufallsgrößen sind.
- Die zweite Aussage ist nicht zutreffend: Für A = 1 und B = –2 ergibt sich ebenfalls ρxy = –0,6. Das Vorzeichen des Quotienten spielt also keine Rolle, weil in der unter (d) berechneten Gleichung B/A nur quadratisch auftritt.
- Ist B sehr viel größer als A, so werden sowohl x als auch y fast ausschließlich durch die Zufallsgröße υ bestimmt und es ist y ≈ –x. Dies entspricht dem Korrelationskoeffizienten ρxy = –1. Dagegen ergibt sich für B/A = 1 stets der Korrelationskoeffizient ρxy = 0 und damit die Unkorreliertheit zwischen x und y.
- Richtig sind somit die Aussagen 1, 3 und 4.
- 6. Bei A = B sind x und y stets (d. h. bei jeder beliebigen WDF der Größen u und υ) unkorreliert. Die neuen Zufallsgrößen x und y sind ebenfalls gaußverteilt. Bei Gaußschen Zufallsgrößen folgt aber aus der Unkorreliertheit auch die statistische Unabhängigkeit und umgekehrt. Also sind beide Aussagen richtig.
- 7. Der Korrelationskoeffizient ergibt sich mit A = B = 1 auch hier zu ρxy = 0. Das heißt, dass x und y unkorreliert sind. Dagegen erkennt man aus der nachfolgend skizzierten 2D-WDF, dass die Bedingung der statistischen Unabhängigkeit im nun vorliegenden Fall nicht mehr gegeben ist. Vielmehr gilt: fxy(x, y) ≠ fx(x) · fy(y). Hier ist also nur die Aussage 1 zutreffend.