Aufgaben:Aufgabe 4.1: WDF, VTF und Wahrscheinlichkeit: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 6: Zeile 6:
 
Zur Wiederholung einiger wichtiger Grundlagen aus dem Buch „Stochastische Signaltheorie”
 
Zur Wiederholung einiger wichtiger Grundlagen aus dem Buch „Stochastische Signaltheorie”
 
beschäftigen wir uns mit
 
beschäftigen wir uns mit
* der [http://www.lntwww.de/Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion '''Wahrscheinlichkeitsdichtefunktion '''] (WDF),
+
* der [[Stochastische_Signaltheorie/Wahrscheinlichkeitsdichtefunktion|Wahrscheinlichkeitsdichtefunktion]] (WDF),
* der [http://www.lntwww.de/Stochastische_Signaltheorie/Verteilungsfunktion ''' Verteilungsfunktion '''] (VTF).
+
* der [[Stochastische_Signaltheorie/Verteilungsfunktion|Verteilungsfunktion]] (VTF).
 +
 
 +
 
 
Die obere Darstellung zeigt die Verteilungsfunktion $F_X(x)$ einer wertdiskreten Zufallsgröße  $X$. Die zugehörige WDF $f_X(x)$ ist in der Teilaufgabe (1) zu bestimmen. Die Gleichung
 
Die obere Darstellung zeigt die Verteilungsfunktion $F_X(x)$ einer wertdiskreten Zufallsgröße  $X$. Die zugehörige WDF $f_X(x)$ ist in der Teilaufgabe (1) zu bestimmen. Die Gleichung
$$ {\rm Pr}(A < X \le B) \hspace{-0.15cm}  = \hspace{-0.15cm} F_X(B) - F_X(A) = $$
+
:$$ {\rm Pr}(A < X \le B) = F_X(B) - F_X(A) = \lim_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} \int_{A+\varepsilon}^{B+\varepsilon} \hspace{-0.15cm}  f_X(x) \hspace{0.1cm}{\rm d}x $$
$$ =\hspace{-0.15cm} \lim_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} \int\limits_{A+\varepsilon}^{B+\varepsilon} \hspace{-0.15cm}  f_X(x) \hspace{0.1cm}{\rm d}x $$
 
  
 
stellt zwei Möglichkeiten dar, um die Wahrscheinlichkeit für das Ereignis „Die Zufallsgröße $X$ liegt in einem Intervall” aus der VTF bzw. der WDF zu berechnen.
 
stellt zwei Möglichkeiten dar, um die Wahrscheinlichkeit für das Ereignis „Die Zufallsgröße $X$ liegt in einem Intervall” aus der VTF bzw. der WDF zu berechnen.
  
 
Die untere Grafik zeigt die Wahrscheinlichkeitsdichtefunktion
 
Die untere Grafik zeigt die Wahrscheinlichkeitsdichtefunktion
$$ f_Y(y) = \left\{ \begin{array}{c} \hspace{0.1cm}1/2 \cdot \cos^2(\pi/4 \cdot y) \\ \hspace{0.1cm} 0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}l}  | y| \le 2, \\   
+
:$$ f_Y(y) = \left\{ \begin{array}{c} \hspace{0.1cm}1/2 \cdot \cos^2(\pi/4 \cdot y) \\ \hspace{0.1cm} 0 \\  \end{array} \right.\quad \begin{array}{*{20}c}  {\rm{f\ddot{u}r}}  \\    {\rm{f\ddot{u}r}}  \\ \end{array}\begin{array}{*{20}l}  | y| \le 2, \\   
 
y < -2 \hspace{0.1cm}{\rm und}\hspace{0.1cm}y > +2 \\ \end{array}$$
 
y < -2 \hspace{0.1cm}{\rm und}\hspace{0.1cm}y > +2 \\ \end{array}$$
 
einer wertkontinuierlichen Zufallsgröße $Y$, die auf den Bereich $|Y| \le 2$ begrenzt ist.
 
einer wertkontinuierlichen Zufallsgröße $Y$, die auf den Bereich $|Y| \le 2$ begrenzt ist.
  
 
Prinzipiell besteht bei der kontinuierlichen Zufallsgröße $Y$ der gleiche Zusammenhang zwischen WDF, VTF und Wahrscheinlichkeiten wie bei einer diskreten Zufallsgröße. Sie werden trotzdem einige Detailunterschiede feststellen. Beispielsweise kann bei der kontinuierlichen Zufallsgröße $Y$ in obiger Gleichung auf den Grenzübergang verzichtet werden, und man erhält vereinfacht:
 
Prinzipiell besteht bei der kontinuierlichen Zufallsgröße $Y$ der gleiche Zusammenhang zwischen WDF, VTF und Wahrscheinlichkeiten wie bei einer diskreten Zufallsgröße. Sie werden trotzdem einige Detailunterschiede feststellen. Beispielsweise kann bei der kontinuierlichen Zufallsgröße $Y$ in obiger Gleichung auf den Grenzübergang verzichtet werden, und man erhält vereinfacht:
$${\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A) =\int_{A}^{B} \hspace{-0.01cm}  f_Y(y)
+
:$${\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A) =\int_{A}^{B} \hspace{-0.01cm}  f_Y(y)
 
\hspace{0.1cm}{\rm d}y\hspace{0.05cm}$$.
 
\hspace{0.1cm}{\rm d}y\hspace{0.05cm}$$.
  
 
''Hinweise:''  
 
''Hinweise:''  
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
 
*Die Aufgabe gehört zum  Kapitel [[Informationstheorie/Differentielle_Entropie|Differentielle Entropie]].
*Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel [http://www.lntwww.de/Stochastische_Signaltheorie '''Kapitel 3'''] des Buches „Stochastische Signaltheorie”.
+
*Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel &bdquo;Kontinuierliche Zufallsgrößen&rdquo; des Buches  [[Stochastische Signaltheorie]].
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
+
*Gegeben ist zudem das folgende unbstimmte Integral:
'''Hinweis''': Die Aufgabe dient zur Vorbereitung der in [http://www.lntwww.de/Informationstheorie/Differentielle_Entropie '''Kapitel 4.1'''] dargelegten Thematik. Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im [http://www.lntwww.de/Stochastische_Signaltheorie '''Kapitel 3'''] des Buches „Stochastische Signaltheorie”.
+
:$$\int \hspace{0.1cm} \cos^2(A \eta) \hspace{0.1cm}{\rm d}\eta =  \frac{\eta}{2} + \frac{1}{4A} \cdot \sin(2A  \eta)$$.
Gegeben ist zudem das folgende unbstimmte Integral:
 
$$\int \hspace{0.1cm} \cos^2(A \eta) \hspace{0.1cm}{\rm d}\eta =  \frac{\eta}{2} + \frac{1}{4A} \cdot \sin(2A  \eta)$$.
 
  
 
===Fragebogen===
 
===Fragebogen===

Version vom 5. April 2017, 10:46 Uhr

VTF (oben) und WDF (unten)

Zur Wiederholung einiger wichtiger Grundlagen aus dem Buch „Stochastische Signaltheorie” beschäftigen wir uns mit


Die obere Darstellung zeigt die Verteilungsfunktion $F_X(x)$ einer wertdiskreten Zufallsgröße $X$. Die zugehörige WDF $f_X(x)$ ist in der Teilaufgabe (1) zu bestimmen. Die Gleichung

$$ {\rm Pr}(A < X \le B) = F_X(B) - F_X(A) = \lim_{\varepsilon \hspace{0.05cm}\rightarrow \hspace{0.05cm}0} \int_{A+\varepsilon}^{B+\varepsilon} \hspace{-0.15cm} f_X(x) \hspace{0.1cm}{\rm d}x $$

stellt zwei Möglichkeiten dar, um die Wahrscheinlichkeit für das Ereignis „Die Zufallsgröße $X$ liegt in einem Intervall” aus der VTF bzw. der WDF zu berechnen.

Die untere Grafik zeigt die Wahrscheinlichkeitsdichtefunktion

$$ f_Y(y) = \left\{ \begin{array}{c} \hspace{0.1cm}1/2 \cdot \cos^2(\pi/4 \cdot y) \\ \hspace{0.1cm} 0 \\ \end{array} \right.\quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}l} | y| \le 2, \\ y < -2 \hspace{0.1cm}{\rm und}\hspace{0.1cm}y > +2 \\ \end{array}$$

einer wertkontinuierlichen Zufallsgröße $Y$, die auf den Bereich $|Y| \le 2$ begrenzt ist.

Prinzipiell besteht bei der kontinuierlichen Zufallsgröße $Y$ der gleiche Zusammenhang zwischen WDF, VTF und Wahrscheinlichkeiten wie bei einer diskreten Zufallsgröße. Sie werden trotzdem einige Detailunterschiede feststellen. Beispielsweise kann bei der kontinuierlichen Zufallsgröße $Y$ in obiger Gleichung auf den Grenzübergang verzichtet werden, und man erhält vereinfacht:

$${\rm Pr}(A \le Y \le B) = F_Y(B) - F_Y(A) =\int_{A}^{B} \hspace{-0.01cm} f_Y(y) \hspace{0.1cm}{\rm d}y\hspace{0.05cm}$$.

Hinweise:

  • Die Aufgabe gehört zum Kapitel Differentielle Entropie.
  • Nützliche Hinweise zur Lösung dieser Aufgabe und weitere Informationen zu den wertkontinuierlichen Zufallsgrößen finden Sie im Kapitel „Kontinuierliche Zufallsgrößen” des Buches Stochastische Signaltheorie.
  • Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
  • Gegeben ist zudem das folgende unbstimmte Integral:
$$\int \hspace{0.1cm} \cos^2(A \eta) \hspace{0.1cm}{\rm d}\eta = \frac{\eta}{2} + \frac{1}{4A} \cdot \sin(2A \eta)$$.

Fragebogen

1

Bestimmen Sie die WDF fX(x) der wertdiskreten Zufallsgröße X. Welche der folgenden Aussagen sind zutreffend?

Die WDF setzt sich aus fünf Diracfunktionen zusammen.
Es gilt Pr(X = 0) = 0.4 und Pr(X = 1) = 0.2.
Es gilt Pr(X = 2) = 0.4.

2

Berechnen Sie die folgenden Wahrscheinlichkeiten:

$Pr(X > 0)$ =

$Pr(|X| ≤ 1)$ =

3

Welche Werte ergeben sich für die Verteilungsfunktion FY(y) = Pr(Yy) der wertkontinuierlichen Zufallsgröße Y, insbesondere:

$F_Y(y = 0)$ =

$F_Y(y = 1)$ =

$F_Y(y = 2)$ =

4

Wie groß ist die Wahrscheinlichkeit, dass Y = 0 ist?

$Pr(Y = 0)$ =

5

Welche der folgenden Aussagen sind richtig?

Das Ergebnis Y = 0 ist unmöglich.
Das Ergebnis Y = 3 ist unmöglich.

6

Wie groß sind die folgenden Wahrscheinlichkeiten?

$Pr(Y > 0)$ =

$Pr(|Y| ≤ 1)$ =


Musterlösung

P ID2857 Inf A 4 1a neu.png

a)  Die Verteilungsfunktion (VTF) FX(x) ergibt sich aus der Wahrscheinlichkeitsdichtefunktion fX(x) durch Integration über die (umbenannte) Zufallsgröße im Bereich von –∞ bis x. Die Umkehrung lautet: Ist die VTF gegeben, so erhält man die WDF durch Differentiation. Die vorgegebene VTF beinhaltet fünf Unstetigkeitsstellen, die nach der Differentiation zu fünf Diracfunktionen führen: $$f_X(x) \hspace{-0.15cm} = \hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x+2) + 0.2 \cdot {\rm \delta}( x+1) $$ $$\ + \hspace{-0.15cm} 0.4 \cdot {\rm \delta}( x) + 0.2 \cdot {\rm \delta}( x-1) $$ $$\ +\hspace{-0.15cm} 0.1 \cdot {\rm \delta}( x-2)\hspace{0.05cm}.$$ Die Diracgewichte geben die Auftrittswahrscheinlichkeiten der Zufallsgröße X = {–2, –1, 0, +1, +2} an, zum Beispiel: $${\rm Pr}(X = 0) \hspace{-0.15cm} = \hspace{-0.15cm} F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_X(x \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})$$ $$=\ \hspace{-0.15cm} 0.7 - 0.3 = 0.4\hspace{0.05cm}.$$ Dementsprechend lauten die weiteren Wahrscheinlichkeiten: $${\rm Pr}(X = +1) = {\rm Pr}(X = -1) = 0.2\hspace{0.05cm},\hspace{0.3cm} {\rm Pr}(X = +2) = {\rm Pr}(X = -2) = 0.1\hspace{0.05cm}.$$ Richtig sind somit die Lösungsvorschläge 1 und 2.

b)  Aus der eben berechneten WDF erhält man: $${\rm Pr}(X >0) \hspace{-0.15cm} = \hspace{-0.15cm} {\rm Pr}(X = +1) + {\rm Pr}(X = +2) \hspace{0.15cm}\underline {= 0.3}\hspace{0.05cm},$$ $$\ {\rm Pr}(|X| \le 1) \hspace{-0.15cm} = \hspace{-0.15cm} {\rm Pr}(X = -1) + {\rm Pr}(X = 0) + {\rm Pr}(X = +1) = 0.2 + 0.4 +0.2 \hspace{0.15cm}\underline {= 0.8}\hspace{0.05cm}.$$

Zum gleichen Ergebnis kommt man über die Verteilungsfunktion. Hier lautet die allgemeine Gleichung, die für wertdiskrete und wertkontinuierliche Zufallsgrößen gleichermaßen gilt: $${\rm Pr}(A < X \le B) =F_X(B) - F_X(A) \hspace{0.05cm}.$$

  • Mit A = 0 und B = +2 erhält man somit:

$${\rm Pr}(0 < X \le +2) = {\rm Pr}(X >0)= F_X(+2) - F_X(0) = 1 - 0.7 \hspace{0.15cm}\underline {= 0.3} \hspace{0.05cm}.$$

  • Setzt man A = –2 und B = +1, so ergibt sich:

$${\rm Pr}(-2 < X \le +1) = {\rm Pr}(|X| \le 1)= F_X(+1) - F_X(-2) = 0.9 - 0.1 \hspace{0.15cm}\underline {= 0.8} \hspace{0.05cm}.$$

c)  Die Verteilungsfunktion FY(y) ergibt sich aus der (umbenannten) WDF fY(η) durch Integration von <nobr>–∞ bis y</nobr>. Aufgrund der Symmetrie kann hierfür im Bereich 0 ≤ y ≤ 2 geschrieben werden: $$F_Y(y) = \int_{-\infty}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta =\frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{-0.1cm}f_Y(\eta) \hspace{0.1cm}{\rm d}\eta.$$ $$\Rightarrow \hspace{0.3cm}F_Y(y) = \frac{1}{2}+\int_{0}^{\hspace{0.05cm}y} \hspace{0.1cm}\frac{1}{2} \cdot \cos^2(\frac{\pi}{4} \cdot \eta) \hspace{0.1cm}{\rm d}\eta = \frac{1}{2}+\frac{y}{4} + \frac{1}{2\pi} \cdot \sin(\frac{\pi}{2} \cdot y).$$

P ID2858 Inf A 4 1c neu.png

Die Gleichung gilt im gesamten Bereich –2 ≤ y ≤ +2. Die gesuchten VTF–Werte sind damit:

  • FY(y = 0) = 0.5 (Integral über die halbe WDF)
  • FY(y = 2) = 1 (Integral über die gesamte WDF)
  • FY(y = 1) = 3/4 + 1/(2 π) ≈ 0.909 (rot hinterlegte Fläche in der WDF)


d)  Die Wahrscheinlichkeit, dass die wertkontinuierliche Zufallsgröße Y im Bereich von –ε bis +ε liegt, kann mit der angegebenen Gleichung wie folgt berechnet werden: $${\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = F_Y(+\varepsilon) - F_Y(-\varepsilon) \hspace{0.05cm}.$$

Berücksichtigt wurde, dass man bei der kontinuierlichen Zufallsgröße Y das „<”–Zeichen ohne Verfälschung durch das „≤”–Zeichen ersetzen kann. Mit dem Grenzübergang ε → 0 ergibt sich die gesuchte Wahrscheinlichkeit: $${\rm Pr}(Y = 0) \hspace{-0.15cm} = \hspace{-0.15cm} \ lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm}{\rm Pr}(-\varepsilon \le Y \le +\varepsilon) = \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(+\varepsilon) - \lim_{\varepsilon\hspace{0.05cm}\rightarrow\hspace{0.05cm}0}\hspace{0.1cm} F_Y(-\varepsilon)$$ $$=\ \hspace{-0.15cm} F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{+}) - F_Y(y \hspace{0.05cm}\rightarrow\hspace{0.05cm}0^{-})\hspace{0.05cm}.$$

Da bei einer kontinuierlichen Zufallsgröße die beiden Grenzwerte gleich sind, gilt Pr(Y = 0) = 0.

Allgemein gilt: Die Wahrscheinlichkeit Pr(Y = y0), dass eine wertkontinuierliche Zufallsgröße Y einen festen Wert y0 annimmt, ist stets 0.

e)  Richtig ist der Lösungsvorschlag 2: Aufgrund der vorliegenden WDF kann das Ergebnis Y = 3 ausgeschlossen werden. Das Ergebnis Y = 0 ist dagegen durchaus möglich, obwohl Pr(Y = 0) = 0 ist. Führt man zum Beispiel ein Zufallsexperiment N → ∞ mal durch und erhält dabei N0 mal das Ergebnis Y = 0, so gilt bei endlichem N0 nach der klassischen Definition: $${\rm Pr}(Y = 0) = \lim_{N\hspace{0.05cm}\rightarrow\hspace{0.05cm}\infty}\hspace{0.1cm}{N_0}/{N} = 0\hspace{0.05cm}.$$

f)  Wir gehen wieder von der Gleichung Pr(AYB) = FY(B) – FY(A) aus. Mit A = 0 und B → ∞ (bzw. B = 2) erhält man: $${\rm Pr}( Y > 0) = {\rm Pr}(0 \le Y \le \infty) = {\rm Pr}(0 \le Y \le 2) = F_Y(2) - F_Y(0) \hspace{0.15cm}\underline {= 0.5}\hspace{0.05cm}.$$

Bei der symmetrischen kontinuierlichen Zufallsgröße Y ist erwartungsgemäß Pr(Y > 0) = 1/2. Obwohl auch die wertdiskrete Zufallsgröße X symmetrisch um x = 0 ist, wurde dagegen oben Pr(X > 0) = 0.3 ermittelt. Weiter erhält man mit A = –1 und B = +1 wegen FY(–1) = 1 – FY(+1):

$${\rm Pr}( |Y| \le 1) = {\rm Pr}(-1 \le Y \le +1) = F_Y(+1) - F_Y(-1) $$ $$\ = 2 \cdot F_Y(+1) -1 = 2 \cdot 0.909 -1 \hspace{0.15cm}\underline {= 0.818}. $$