Aufgaben:Aufgabe 1.1Z: Binäre Entropiefunktion: Unterschied zwischen den Versionen
Zeile 17: | Zeile 17: | ||
Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird. | Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird. | ||
− | + | In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben: | |
:$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$ | :$$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$ | ||
Zeile 29: | Zeile 29: | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Wie hängen | + | {Wie hängen $H_{\rm bin}(p)$ in bit und $H'_{\rm bin}(p)$ in nat zusammen? |
|type="[]"} | |type="[]"} | ||
− | + | + | + $H_{\rm bin}(p)$ und $H'_{\rm bin}(p)$ unterscheiden sich um einen Faktor. |
− | - Es gilt | + | - Es gilt $H'_{\rm bin}(p) = H_{\rm bin}(\ln \ p)$. |
− | - Es gilt | + | - Es gilt $H'_{\rm bin}(p) = 1 + H_{\rm bin}(2 p)$. |
− | {Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für | + | {Zeigen Sie, dass sich das Maximum der binären Entropiefunktion für $p = 0.5$ ergibt. Wie groß ist $H_\text{bin}(p = 0.5)$? |
|type="{}"} | |type="{}"} | ||
− | $H_\text{bin}(p = 0.5)$ | + | $H_\text{bin}(p = 0.5) \ = $ { 1 } $\ \rm bit$ |
− | {Berechnen Sie den binären Entropiewert für | + | {Berechnen Sie den binären Entropiewert für $p = 0.05$. |
|type="{}"} | |type="{}"} | ||
− | $H_\text{bin}(p = 0.05)$ | + | $H_\text{bin}(p = 0.05) \ = $ { 0.286 3% } $\ \rm bit$ |
− | {Geben Sie den größeren der beiden | + | {Geben Sie den größeren der beiden $p$–Werte ein, die sich aus der Gleichung $H_\text{bin}(p)= 0.5 \ \rm bit$ ergeben. |
|type="{}"} | |type="{}"} | ||
− | $p$ | + | $p \ = $ { 0.89 3% } |
− | {Durch unzureichende Simulation wurde | + | {Durch unzureichende Simulation wurde $p = 0.5$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie? |
|type="{}"} | |type="{}"} | ||
− | $p = 0.45\ statt\ p=0.5:\ \ \ | + | $p = 0.45\ {\rm statt}\ p=0.5\hspace{-0.1cm}:\ \ \varepsilon_H \ = $ { -0.72--0.68 } $\ \rm \%$ |
− | {Durch unzureichende Simulation wurde | + | {Durch unzureichende Simulation wurde $p = 0.05$ um $10\%$ zu niedrig ermittelt. Wie groß ist der prozentuale Fehler hinsichtlich der Entropie? |
|type="{}"} | |type="{}"} | ||
− | $p = 0.045\ statt\ p=0.05:\ | + | $p = 0.045\ {\rm statt}\ p=0.05\hspace{-0.1cm}:\ \ \varepsilon_H \ = $ { -7.44--7.16 } $\ \rm \%$ |
− | |||
Version vom 25. April 2017, 15:33 Uhr
Wir betrachten eine Folge von binären Zufallsgrößen mit dem Symbolvorrat $\{ \rm A, \ B \}$ ⇒ $M = 2$. Die Auftrittswahrscheinlichkeiten der beiden Symbole seien $p_{\rm A }= p$ und $p_{\rm B } = 1 - p$.
Die einzelnen Folgenelemente sind statistisch unabhängig. Für die Entropie dieser Nachrichtenquelle gilt gleichermaßen:
- $$H_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [bit]}\hspace{0.05cm},$$
- $$ H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p}\hspace{0.15cm}{\rm in \hspace{0.15cm} [nat]}\hspace{0.05cm}.$$
In diesen Gleichungen werden als Kurzbezeichnungen verwendet:
- der natürliche Logarithmus ⇒ $ \ln \ p = \log_{\rm e} \ p$,
- der Logarithmus dualis ⇒ ${\rm ld} \ p = \log_2 \ p$.
Die Grafik zeigt diese binäre Entropiefunktion in Abhängigkeit des Parameters $p$, wobei $0 ≤ p ≤ 1$ vorausgesetzt wird.
In den Teilaufgaben (5) und (6) soll der relative Fehler ermittelt werden, wenn die Symbolwahrscheinlichkeit $p$ per Simulation (also als relative Häufigkeit $h$) ermittelt wurde und sich dabei fälschlicherweise $h = 0.9 \cdot p$ ergeben hat. Der relative Fehler ist dann wie folgt gegeben:
- $$\varepsilon_{H} = \frac{H_{\rm bin}(h)- H_{\rm bin}(p)}{H_{\rm bin}(p)}\hspace{0.05cm}.$$
Hinweise:
- Die Aufgabe gehört zum Kapitel Gedächtnislose Nachrichtenquellen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- Hinweis: Aus Platzgründen verwenden wir in der Musterlösung „ld” anstelle von „log2”.
- 1. Die Entropiefunktion H' bin(p) lautet entsprechend der Angabe:
- $$H'_{\rm bin}(p) \hspace{0.1cm} = \hspace{0.1cm} p \cdot {\rm ln}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ln}\hspace{0.1cm}\frac{1}{1-p} = \\ \hspace{0.1cm} = \hspace{0.1cm} {\rm ln}\hspace{0.1cm}2 \cdot \left [ p \cdot {\rm ld}\hspace{0.1cm}\frac{1}{\hspace{0.1cm}p\hspace{0.1cm}} + (1-p) \cdot {\rm ld}\hspace{0.1cm}\frac{1}{1-p}\right ]$$
- $$\Rightarrow \hspace{0.3cm} H'_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} nat)}= {\rm ln}\hspace{0.1cm}2 \cdot H_{\rm bin}(p) \hspace{0.15cm}{\rm (in \hspace{0.15cm} bit)} = 0.693\cdot H_{\rm bin}(p)\hspace{0.05cm}.$$
- Richtig ist also der erste Lösungsvorschlag. Die beiden weiteren Vorgaben machen keinen Sinn.
- 2. Die Optimierungsbedingung lautet dHbin(p)/dp = 0 bzw.
- $$\frac{{\rm d}H'_{\rm bin}(p)}{{\rm d}p} \stackrel{!}{=} 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \frac{\rm d}{{\rm d}p} \left [ - p \cdot {\rm ln}\hspace{0.1cm}p - (1-p) \cdot {\rm ln}\hspace{0.1cm}({1-p})\right ] \stackrel{!}{=} 0$$
- $$\Rightarrow \hspace{0.3cm} - {\rm ln}\hspace{0.1cm}p - p \cdot \frac {1}{p}+ {\rm ln}\hspace{0.1cm}(1-p) + (1-p)\cdot \frac {1}{1- p}\stackrel{!}{=} 0$$
- $$\Rightarrow \hspace{0.3cm} {\rm ln}\hspace{0.1cm}\frac {1-p}{p}= 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm}\frac {1-p}{p}= 1 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} \underline { p = 0.5}\hspace{0.05cm}.$$
- Die Entropiewerte für p = 0.5 lauten somit:
- $$H'_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ln}\hspace{0.1cm}0.5 = {\rm ln}\hspace{0.1cm}2 = 0.693 \, {\rm nat}\hspace{0.05cm},\\ H_{\rm bin}(p = 0.5) \hspace{0.1cm} = \hspace{0.1cm} -2 \cdot 0.5 \cdot {\rm ld}\hspace{0.1cm}0.5 = {\rm ld}\hspace{0.1cm}2 \hspace{0.15cm}\underline {= 1 \, {\rm bit}}\hspace{0.05cm}.$$
- 3. Für p = 5% erhält man:
- $$H_{\rm bin}(p = 0.05) \hspace{0.1cm} = \hspace{0.1cm} 0.05 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.05}+ 0.95 \cdot {\rm ld}\hspace{0.1cm}\frac{1}{0.95}= \\ \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot {\rm ln}\hspace{0.1cm}20+ 0.95 \cdot {\rm ln}\hspace{0.1cm}1.053\right ]= \\ \hspace{0.1cm} = \hspace{0.1cm} \frac{1}{0.693} \cdot \left [ 0.05 \cdot 2.995+ 0.95 \cdot 0.051\right ] \hspace{0.15cm}\underline {\approx 0.286 \, {\rm bit}}\hspace{0.05cm}.$$
- 4. Diese Aufgabe lässt sich nicht in geschlossener Form lösen, sondern durch „Probieren”. Eine Lösung liefert das Ergebnis:
- $$H_{\rm bin}(p = 0.10) = 0.469 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm}H_{\rm bin}(p = 0.12) = 0.529 \, {\rm bit}\hspace{0.05cm},\hspace{0.2cm} H_{\rm bin}(p = 0.11) \approx 0.5 \, {\rm bit} $$
- $$\Rightarrow \hspace{0.3cm}p_1 \approx 0.11\hspace{0.05cm}. $$
- Die zweite (gesuchte) Lösung ergibt sich aus der Symmetrie von Hbin(p) zu p2 = 1 – p1 = 0.89.
- 5. Mit p = 0.45 erhält man Hbin(p) = 0.993 bit. Der relative Fehler bezüglich Entropie ist somit
- $$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.45)- H_{\rm bin}(p= 0.5)}{H_{\rm bin}(p = 0.5)}= \frac{0.993- 1}{1}\hspace{0.15cm}\underline {= -0.7 \, {\rm \%}} \hspace{0.05cm}.$$
- Das Minuszeichen deutet darauf hin, dass der Entropiewert H = 0.993 zu klein ist. Hätte die Simulation den zu großen Wert p = 0.55 ergeben, so wäre H und auch der relative Fehler genau so groß.
- 6. Es gilt Hbin(p = 0.045) = 0.265 bit. Mit dem Ergebnis aus (3) ⇒ Hbin(p = 0.05) = 0.286 bit folgt daraus für den relativen Fehler bezüglich der Entropie:
- $$\varepsilon_{H} = \frac{H_{\rm bin}(p = 0.045)- H_{\rm bin}(p= 0.05)}{H_{\rm bin}(p = 0.05)}= \frac{0.265- 0.286}{0.286}\hspace{0.15cm}\underline {= -7.3 \, {\rm \%}} \hspace{0.05cm}.$$
- Eine falsche Bestimmung der Symbolwahrscheinlichkeiten um 10% macht sich für p = 0.05 aufgrund des steileren Hbin(p)–Verlaufs deutlich stärker bemerkbar als für p = 0.5. Eine zu große Wahrscheinlichkeit p = 0.055 hätte zu Hbin(p = 0.055) = 0.307 bit geführt und damit zu einer Verfälschung um εH = +7.3%. In diesem Bereich verläuft die Entropiekurve also (mit guter Näherung) linear.