Aufgaben:Aufgabe 3.8Z: Tupel aus ternären Zufallsgrößen: Unterschied zwischen den Versionen
Zeile 48: | Zeile 48: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | '''(1)''' Bei den beiden Zufallsgrößen $X =\{0, 1, 2\}$ ⇒ $|X| = 3$ und $Y = \{0, 1, 2\}$ ⇒ $|Y| = 3$ liegt jeweils eine Gleichverteilung vor. Damit erhält man für die Entropien: |
− | $H(X) = | + | :$$H(X) = {\rm log}_2 \hspace{0.1cm} (3) |
+ | \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}} \hspace{0.05cm},$$ | ||
+ | :$$H(Y) = {\rm log}_2 \hspace{0.1cm} (3) | ||
+ | \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}}\hspace{0.05cm}.$$ | ||
− | $H( | + | Die 2D–Zufallsgröße $XY = \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$ ⇒ $|XY| = |Z| = 9$ weist ebenfalls gleiche Wahrscheinlichkeiten auf: $p_{ 00 } = p_{ 01 } =\text{...} = p_{ 22 } = 1/9$. Daraus folgt: |
+ | :$$H(XY) = {\rm log}_2 \hspace{0.1cm} (9) \hspace{0.15cm}\underline{= 3.170\,{\rm (bit)}} \hspace{0.05cm}.$$ | ||
− | Die | + | '''(2)''' Die Zufallsgrößen$X$und $Y$ sind wegen $P_{ XY }(⋅) = P_X(⋅) · P_Y(⋅)$ statistisch unabhängig ⇒ $I(X, Y)\hspace{0.15cm}\underline{ = 0}$. Zum gleichen Ergebnis kommt man über die Gleichung $I(X; Y) = H(X) + H(Y) – H(XY)$. |
− | |||
− | + | '''(3)''' Interpretiert man $I(X; Z)$ als die verbleibende Unsicherheit hinsichtlich des Tupels $Z$, wenn die erste Komponente $X$ bekannt ist, so gilt offensichtlich$ I(X; Z) = H(Y)\hspace{0.15cm}\underline{ = 1.585 \ \rm bit}$. | |
− | ''' | ||
− | |||
− | |||
− | |||
Rein formal lässt sich diese Aufgabe auch wie folgt lösen: | Rein formal lässt sich diese Aufgabe auch wie folgt lösen: | ||
− | :* Die Entropie $H(Z)$ ist gleich $H(XY) = 3.170 bit$. | + | :* Die Entropie $H(Z)$ ist gleich der Verbundentropie $H(XY) = 3.170 bit$. |
[[Datei:P_ID2773__Inf_Z_3_7d.png|right|]] | [[Datei:P_ID2773__Inf_Z_3_7d.png|right|]] | ||
:* Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt (Rechte Grafik) $\Rightarrow H(XZ) = log2 (9) = 3.170 bit$. | :* Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt (Rechte Grafik) $\Rightarrow H(XZ) = log2 (9) = 3.170 bit$. | ||
Zeile 77: | Zeile 76: | ||
[[Datei:P_ID2774__Inf_Z_3_7c.png|right|]] | [[Datei:P_ID2774__Inf_Z_3_7c.png|right|]] | ||
− | '''4 | + | '''(4)''' Entsprechend der rechten Grafik gilt: |
$$H(Z|X) = H(XZ)- H(X) = 3.170 - 1.585 = 1.585 (bit)$$ | $$H(Z|X) = H(XZ)- H(X) = 3.170 - 1.585 = 1.585 (bit)$$ |
Version vom 1. Juni 2017, 15:00 Uhr
Wir betrachten das Tupel $Z = (X, Y)$, wobei die Einzelkomponenten $X$ und $Y$ jeweils ternäre Zufallsgrößen darstellen ⇒ Symbolumfang $|X| = |Y| = 3$. Die gemeinsame Wahrscheinlichkeitsfunktion $P_{ XY }(X, Y)$ ist rechts skizziert.
In dieser Aufgabe sind zu berechnen:
- die Verbundentropie $H(XY)$ und die Transinformation $I(X; Y)$,
- die Verbundentropie $H(XZ)$ und die Transinformation $I(X; Z)$,
- die beiden bedingten Entropien $H(Z|X)$ und $H(X|Z)$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Verschiedene Entropien zweidimensionaler Zufallsgrößen.
- Insbesondere wird Bezug genommen auf die Seiten Bedingte Wahrscheinlichkeit und bedingte Entropie sowie Transinformation zwischen zwei Zufallsgrößen.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$H(X) = {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}} \hspace{0.05cm},$$
- $$H(Y) = {\rm log}_2 \hspace{0.1cm} (3) \hspace{0.15cm}\underline{= 1.585\,{\rm (bit)}}\hspace{0.05cm}.$$
Die 2D–Zufallsgröße $XY = \{00, 01, 02, 10, 11, 12, 20, 21, 22\}$ ⇒ $|XY| = |Z| = 9$ weist ebenfalls gleiche Wahrscheinlichkeiten auf: $p_{ 00 } = p_{ 01 } =\text{...} = p_{ 22 } = 1/9$. Daraus folgt:
- $$H(XY) = {\rm log}_2 \hspace{0.1cm} (9) \hspace{0.15cm}\underline{= 3.170\,{\rm (bit)}} \hspace{0.05cm}.$$
(2) Die Zufallsgrößen$X$und $Y$ sind wegen $P_{ XY }(⋅) = P_X(⋅) · P_Y(⋅)$ statistisch unabhängig ⇒ $I(X, Y)\hspace{0.15cm}\underline{ = 0}$. Zum gleichen Ergebnis kommt man über die Gleichung $I(X; Y) = H(X) + H(Y) – H(XY)$.
(3) Interpretiert man $I(X; Z)$ als die verbleibende Unsicherheit hinsichtlich des Tupels $Z$, wenn die erste Komponente $X$ bekannt ist, so gilt offensichtlich$ I(X; Z) = H(Y)\hspace{0.15cm}\underline{ = 1.585 \ \rm bit}$.
Rein formal lässt sich diese Aufgabe auch wie folgt lösen:
- Die Entropie $H(Z)$ ist gleich der Verbundentropie $H(XY) = 3.170 bit$.
- Die Verbundwahrscheinlichkeit $P_{ XZ }(X, Z)$ beinhaltet neun Elemente der Wahrscheinlichkeit $1/9$, alle anderen sind mit Nullen belegt (Rechte Grafik) $\Rightarrow H(XZ) = log2 (9) = 3.170 bit$.
- Damit gilt für die Transinformation (gemeinsame Information der Zufalsgrößen $X$ und $Z$):
$$I(X;Z) = H(X) + H(Z) - H(XZ) = $$ $$= 1.585 +3.170 - 3170 = 1.585 (bit)$$
(4) Entsprechend der rechten Grafik gilt:
$$H(Z|X) = H(XZ)- H(X) = 3.170 - 1.585 = 1.585 (bit)$$ $$H(X|Z) = H(XZ) - H(Z) = 3.170 - 3.170 = 0 (bit)$$
- $H(Z|X)$ gibt die Restunsicherheit hinsichtlich des Tupels $Z$ an, wenn man die erste Komponente $X$kennt. Die Unsicherheit hinsichtlich des Tupels $Z$ ist $H(Z) = 2 · log_2 (3) bit$, bei Kenntnis der Komponente $X$ halbiert sich die Unsicherheit auf $H(Z|X) = log2 (3) bit$.
- $H(X|Z)$gibt die verbleibende Unsicherheit hinsichtlich der Komponente $X$ an, wenn man das Tupel $Z = (X, Y)$ kennt. Diese Unsicherheit ist natürlich $0$: Kennt man $Z$, so kennt man auch $X$.