Aufgaben:Aufgabe 3.4: Einfacher Phasenmodulator: Unterschied zwischen den Versionen
Zeile 69: | Zeile 69: | ||
===Musterlösung=== | ===Musterlösung=== | ||
{{ML-Kopf}} | {{ML-Kopf}} | ||
− | '''1 | + | [[Datei:P_ID1087__Mod_A_3_4_a.png|right|frame|Konstruktion der „vertikalen” Ortskurve aus den Zeigern]] |
− | $$s_{\rm TP}(t) = A_{\rm T} \cdot \left ( 1 + {\rm j}\cdot \frac {\eta}{2}\cdot \left ({\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t} + {\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}\right) \right) | + | '''(1)''' Richtig ist der <u>Lösungsvorschlag 3</u>: |
− | + | *Das äquivalente Tiefpass–Signal lautet: | |
− | + | :$$s_{\rm TP}(t) = A_{\rm T} \cdot \left ( 1 + {\rm j}\cdot \frac {\eta}{2}\cdot \left ({\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t} + {\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}\right) \right) | |
− | Die Grafik verdeutlicht, dass die Ortskurve $s_{TP}(t)$ nun eine vertikale Gerade ist im Gegensatz zur idealen PM (Kreisbogen) und zur ZSB–AM (horizontale Gerade). Im Folgenden wird $ | + | = A_{\rm T} \cdot \left ( 1 + {\rm j}\cdot {\eta}\cdot \cos (\omega_{\rm N} \cdot t) \right)\hspace{0.05cm}.$$ |
+ | *Die Grafik verdeutlicht, dass die Ortskurve $s_{\rm TP}(t)$ nun eine vertikale Gerade ist im Gegensatz zur idealen PM (Kreisbogen) und zur ZSB–AM (horizontale Gerade). Im Folgenden wird $A_{\rm T} = 1$ gesetzt. | ||
− | '''2 | + | '''(2)''' Die Hüllkurve ergibt sich aus der zeitabhängigen Zeigerlänge zu |
− | $$a(t) = \sqrt{1 + \eta^2 \cdot \cos^2 (\omega_{\rm N} \cdot t)} | + | :$$a(t) = \sqrt{1 + \eta^2 \cdot \cos^2 (\omega_{\rm N} \cdot t)} \hspace{0.3cm} |
− | + | \Rightarrow \hspace{0.3cm}a_{\rm min} \hspace{0.15cm}\underline { = 1}, \hspace{0.3cm}a_{\rm max} = \sqrt{1 + \eta^2 }\hspace{0.05cm}.$$ | |
− | Für $η = 1$ | + | Für $η = 1$ ergibt sich der Maximalwert zu $a_{\rm max} = \sqrt{2}\hspace{0.15cm}\underline { ≈ 1.414}$. |
− | '''3 | + | '''(3)''' Für die Phasenfunktion dieses einfachen Phasendemodulators gilt: |
− | $$\phi(t) = \arctan \frac{{\rm Im}[s_{\rm TP}(t)]}{{\rm Re}[s_{\rm TP}(t)]} = \arctan (\eta \cdot \cos (\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$ | + | :$$\phi(t) = \arctan \frac{{\rm Im}[s_{\rm TP}(t)]}{{\rm Re}[s_{\rm TP}(t)]} = \arctan (\eta \cdot \cos (\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$ |
− | Der Maximalwert tritt beispielsweise zur Zeit $t = 0$ auf und beträgt $ϕ_{max} = arctan(η)$. Für $η = 1$ erhält man $ϕ_{max} = | + | Der Maximalwert tritt beispielsweise zur Zeit $t = 0$ auf und beträgt $ϕ_{\rm max} = \arctan(η)$. |
+ | *Für $η = 1$ erhält man $ϕ_{\rm max}\hspace{0.15cm}\underline { = 45^\circ}$ (im Vergleich: Bei idealer PM $57.3^\circ$), | ||
+ | *Für $η = 0.5$ergibt sich $ϕ_{\rm max}\hspace{0.15cm}\underline { \approx 26.6^\circ}$ (bei idealer PM $28.7^\circ$). | ||
− | '''4 | + | '''(4)''' Richtig ist der <u>Lösungsvorschlag 3</u>: |
+ | *Es gilt <u>nicht</u> $\arctan[η · cos(γ)] = η · \cos(γ)$. | ||
+ | *Das heißt, dass das Sinkensignal im Gegensatz zum Quellensignal nicht cosinusförmig verläuft. | ||
+ | *Dies weist auf nichtlineare Verzerrungen hin. | ||
− | '''5 | + | '''(5)''' Mit $γ = η · \cos(ω_N · t)$ und $\arctan(γ) ≈ γ – γ^3/3$ erhält man: |
− | $$ \phi(t) = \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \cos^3 (\omega_{\rm N} \cdot t))= | + | :$$ \phi(t) = \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \cos^3 (\omega_{\rm N} \cdot t))= |
− | + | \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \left [ {3}/{4}\cdot \cos (\omega_{\rm N} \cdot t) + {1}/{4}\cdot \cos (3 \omega_{\rm N} \cdot t)\right ] $$ | |
− | $$ = \left(\eta - | + | :$$\Rightarrow \hspace{0.3cm} \phi(t) = \left(\eta - {\eta^3}/{4} \right) \cdot \cos (\omega_{\rm N} \cdot t) - {\eta^3}/{12}\cdot \cos (3\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$ |
− | Das bedeutet: Bei Verwendung der angegebenen Reihenentwicklung (Terme 5. und höherer Ordnung werden vernachlässigt) ist nur der Klirrfaktor dritter Ordnung von 0 verschieden. Man erhält: | + | Das bedeutet: Bei Verwendung der angegebenen Reihenentwicklung (Terme 5. und höherer Ordnung werden vernachlässigt) ist nur der Klirrfaktor dritter Ordnung von $0$ verschieden. Man erhält: |
− | $$K = K_3 = \frac{\eta^3/12}{\eta-\eta^3/4}= \frac{1}{12/\eta^2 -3} \hspace{0.05cm}.$$ | + | :$$K = K_3 = \frac{\eta^3/12}{\eta-\eta^3/4}= \frac{1}{12/\eta^2 -3} \hspace{0.05cm}.$$ |
− | Für $η = 1$ ergibt sich der Zahlenwert $K = 1/9 ≈ 11.1%$. Für $η = 0.5$ ist der Klirrfaktor $K = 1/45 ≈ 2.2%$. | + | *Für $η = 1$ ergibt sich der Zahlenwert $K = 1/9 \hspace{0.15cm}\underline { ≈ 11.1\%}$. |
+ | *Für $η = 0.5$ ist der Klirrfaktor $K = 1/45 \hspace{0.15cm}\underline {≈ 2.2\%}$. | ||
− | Eine Simulation zeigt, dass man durch den Abbruch der Reihe nach dem Term dritter Ordnung einen Fehler macht, der den Klirrfaktor als zu hoch erscheinen lässt | + | |
+ | Eine Simulation zeigt, dass man durch den Abbruch der Reihe nach dem Term dritter Ordnung einen Fehler macht, der den Klirrfaktor als zu hoch erscheinen lässt: | ||
+ | *Die per Simulation gewonnenen Werte sind $K ≈ 6%$ (für $η = 1$) und $K ≈ 2%$ (für $η = 0.5$). | ||
+ | *Der Fehler nimmt also mit wachsendem η mehr als proportional zu. | ||
{{ML-Fuß}} | {{ML-Fuß}} |
Version vom 5. Juli 2017, 16:24 Uhr
Die nebenstehende Schaltung erlaubt die näherungsweise Realisierung eines phasenmodulierten Signals. Der $90^\circ$–Phasenschieber formt aus dem cosinusförmigen Träger $z(t)$ ein Sinussignal gleicher Frequenz, so dass für das modulierte Signal geschrieben werden kann:
- $$ s(t) = z(t) + q(t) \cdot \frac{z(t- T_0/4)}{A_{\rm T}} = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + q(t) \cdot \sin (\omega_{\rm T} \cdot t) \hspace{0.05cm}.$$
Der zweite Term beschreibt eine „ZSB–AM ohne Träger”. Zusätzlich wird der um $90^\circ$ phasenverschobene Träger addiert. Bei cosinusförmigem Quellensignal $q(t) = A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t)$ergibt sich somit:
- $$s(t) = A_{\rm T} \cdot \cos (\omega_{\rm T} \cdot t) + A_{\rm N} \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) $$
- $$\Rightarrow \hspace{0.3cm}s(t) = A_{\rm T} \cdot \left[\cos (\omega_{\rm T} \cdot t) + \eta \cdot \cos (\omega_{\rm N} \cdot t) \cdot \sin (\omega_{\rm T} \cdot t) \right] \hspace{0.05cm}.$$
Das Verhältnis $η = A_{\rm N}/A_{\rm T}$ bezeichnen wir als den Modulationsindex; die Trägeramplitude wird im Folgenden zur Vereinfachung $A_{\rm T} = 1$ gesetzt.
- Im Gegensatz zur idealen Phasenmodulation unterscheidet sich bei dieser „näherungsweisen Phasenmodulation” $η$ vom Phasenhub $ϕ_{\rm max}$.
- Außerdem werden Sie erkennen, dass die Hüllkurve $a(t) ≠ 1$ ist. Das bedeutet, dass hier der Phasenmodulation eine unerwünschte Amplitudenmodulation überlagert ist.
Berechnet werden sollen in dieser Aufgabe aus der Darstellung des äquivalenten TP–Signals $s_{TP}(t)$ in der komplexen Ebene (Ortskurve)
- die Hüllkurve $a(t)$ und
- die Phasenfunktion $ϕ(t)$.
Anschließend sollen die Verfälschungen analysiert werden, die sich ergeben, wenn bei diesem nichtidealen PM-Modulator empfangsseitig ein idealer PM-Demodulator eingesetzt wird, der das Sinkensignal $v(t)$ proportional zur Phase $ϕ(t)$ setzt.
Hinweise:
- Die Aufgabe gehört zum Kapitel Phasenmodulation.
- Bezug genommen wird insbesondere auf die Seite Äquivalentes Tiefpass-Signal bei Phasenmodulation.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Zur näherungsweisen Berechnung des Klirrfaktors können Sie folgende Gleichungen benutzen:
- $$\arctan(\gamma) \approx \gamma - {\gamma^3}/{3} \hspace{0.05cm}, \hspace{0.3cm} \cos^3(\gamma) ={3}/{4} \cdot \cos(\gamma) +{1}/{4} \cdot \cos(3 \cdot \gamma) \hspace{0.05cm}.$$
Fragebogen
Musterlösung
(1) Richtig ist der Lösungsvorschlag 3:
- Das äquivalente Tiefpass–Signal lautet:
- $$s_{\rm TP}(t) = A_{\rm T} \cdot \left ( 1 + {\rm j}\cdot \frac {\eta}{2}\cdot \left ({\rm e}^{\hspace{0.05cm}{\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t} + {\rm e}^{\hspace{0.05cm}{-\rm j} \hspace{0.05cm}\cdot \hspace{0.05cm}\omega_{\rm N} \hspace{0.05cm}\cdot \hspace{0.05cm} t}\right) \right) = A_{\rm T} \cdot \left ( 1 + {\rm j}\cdot {\eta}\cdot \cos (\omega_{\rm N} \cdot t) \right)\hspace{0.05cm}.$$
- Die Grafik verdeutlicht, dass die Ortskurve $s_{\rm TP}(t)$ nun eine vertikale Gerade ist im Gegensatz zur idealen PM (Kreisbogen) und zur ZSB–AM (horizontale Gerade). Im Folgenden wird $A_{\rm T} = 1$ gesetzt.
(2) Die Hüllkurve ergibt sich aus der zeitabhängigen Zeigerlänge zu
- $$a(t) = \sqrt{1 + \eta^2 \cdot \cos^2 (\omega_{\rm N} \cdot t)} \hspace{0.3cm} \Rightarrow \hspace{0.3cm}a_{\rm min} \hspace{0.15cm}\underline { = 1}, \hspace{0.3cm}a_{\rm max} = \sqrt{1 + \eta^2 }\hspace{0.05cm}.$$
Für $η = 1$ ergibt sich der Maximalwert zu $a_{\rm max} = \sqrt{2}\hspace{0.15cm}\underline { ≈ 1.414}$.
(3) Für die Phasenfunktion dieses einfachen Phasendemodulators gilt:
- $$\phi(t) = \arctan \frac{{\rm Im}[s_{\rm TP}(t)]}{{\rm Re}[s_{\rm TP}(t)]} = \arctan (\eta \cdot \cos (\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$
Der Maximalwert tritt beispielsweise zur Zeit $t = 0$ auf und beträgt $ϕ_{\rm max} = \arctan(η)$.
- Für $η = 1$ erhält man $ϕ_{\rm max}\hspace{0.15cm}\underline { = 45^\circ}$ (im Vergleich: Bei idealer PM $57.3^\circ$),
- Für $η = 0.5$ergibt sich $ϕ_{\rm max}\hspace{0.15cm}\underline { \approx 26.6^\circ}$ (bei idealer PM $28.7^\circ$).
(4) Richtig ist der Lösungsvorschlag 3:
- Es gilt nicht $\arctan[η · cos(γ)] = η · \cos(γ)$.
- Das heißt, dass das Sinkensignal im Gegensatz zum Quellensignal nicht cosinusförmig verläuft.
- Dies weist auf nichtlineare Verzerrungen hin.
(5) Mit $γ = η · \cos(ω_N · t)$ und $\arctan(γ) ≈ γ – γ^3/3$ erhält man:
- $$ \phi(t) = \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \cos^3 (\omega_{\rm N} \cdot t))= \eta \cdot \cos (\omega_{\rm N} \cdot t) - \frac{\eta^3}{3}\cdot \left [ {3}/{4}\cdot \cos (\omega_{\rm N} \cdot t) + {1}/{4}\cdot \cos (3 \omega_{\rm N} \cdot t)\right ] $$
- $$\Rightarrow \hspace{0.3cm} \phi(t) = \left(\eta - {\eta^3}/{4} \right) \cdot \cos (\omega_{\rm N} \cdot t) - {\eta^3}/{12}\cdot \cos (3\omega_{\rm N} \cdot t)) \hspace{0.05cm}.$$
Das bedeutet: Bei Verwendung der angegebenen Reihenentwicklung (Terme 5. und höherer Ordnung werden vernachlässigt) ist nur der Klirrfaktor dritter Ordnung von $0$ verschieden. Man erhält:
- $$K = K_3 = \frac{\eta^3/12}{\eta-\eta^3/4}= \frac{1}{12/\eta^2 -3} \hspace{0.05cm}.$$
- Für $η = 1$ ergibt sich der Zahlenwert $K = 1/9 \hspace{0.15cm}\underline { ≈ 11.1\%}$.
- Für $η = 0.5$ ist der Klirrfaktor $K = 1/45 \hspace{0.15cm}\underline {≈ 2.2\%}$.
Eine Simulation zeigt, dass man durch den Abbruch der Reihe nach dem Term dritter Ordnung einen Fehler macht, der den Klirrfaktor als zu hoch erscheinen lässt:
- Die per Simulation gewonnenen Werte sind $K ≈ 6%$ (für $η = 1$) und $K ≈ 2%$ (für $η = 0.5$).
- Der Fehler nimmt also mit wachsendem η mehr als proportional zu.