Aufgaben:Aufgabe 1.1Z: Redundanzfreie Binärquelle: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 36: Zeile 36:
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)''' 
+
'''(1)'''&nbsp;Entsprechend der Grafik beträgt der Abstand zweier Symbole <u><i>T</i> = 2 &mu;s</u>.
'''(2)'''&nbsp;
+
 
'''(3)'''&nbsp;
+
'''(2)'''&nbsp;Bei einer redundanzfreien Binärquelle &ndash; und nur bei dieser &ndash; ist die Bitrate <i>R</i> = 1/<i>T</i>.
 +
 
 +
Demzufolge ergibt sich hier <u><i>R</i> = 500 kbit/s</u>.
 +
 
 +
'''(3)'''&nbsp;Die möglichen Amplitudenkoeffizienten sind &plusmn;1. Deshalb ist die gegebene Symbolfolge <u>bipolar</u>.
 +
 
 
'''(4)'''&nbsp;
 
'''(4)'''&nbsp;
 
'''(5)'''&nbsp;
 
'''(5)'''&nbsp;

Version vom 20. Oktober 2017, 12:56 Uhr


P ID1257 Dig Z 1 1.png

Eine jede digitale Quelle kann durch ihre Quellensymbolfolge $$\langle q_\nu \rangle = \langle \hspace{0.05cm}q_0 \hspace{0.05cm}, q_1 \hspace{0.05cm}, q_2 \hspace{0.05cm}, ... \hspace{0.05cm} \rangle$$ vollständig beschrieben werden, wobei hier entgegen dem Theorieteil die Laufvariable $\nu$ mit 0 beginnt. Entstammt jedes einzelne Symbol $q_\nu$ dem Symbolvorrat {L, H}, so spricht man von einer Binärquelle.

Unter Verwendung des Symbolabstandes $T$ kann man die Quellensymbolfolge $\langle q_\nu \rangle$ in äquivalenter Weise auch durch das diracförmige Quellensignal $$q(t) = \sum_{(\nu)} a_\nu \cdot {\rm \delta} ( t - \nu \cdot T)$$ kennzeichnen, was eher einer systemtheoretischen Betrachtungsweise entspricht. Hierbei bezeichnet man $a_\nu$ als die Amplitudenkoeffizienten. Im Falle einer binären unipolaren Digitalsignalübertragung gilt: $$a_\nu = \left\{ \begin{array}{c} 1 \\ 0 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$ Entsprechend gilt bei einem bipolaren System: $$a_\nu = \left\{ \begin{array}{c} +1 \\ -1 \\ \end{array} \right.\quad \begin{array}{*{1}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} q_\nu = \mathbf{H} \hspace{0.05cm}, \\ q_\nu = \mathbf{L} \hspace{0.05cm}. \\ \end{array}$$ In der Grafik ist das diracförmige Quellensignal $q(t)$ einer Binärquelle dargestellt. Von dieser ist bekannt, dass sie redundanzfrei ist. Diese Aussage ist für die Lösung der Aufgabe durchaus relevant.

Hinweis: Diese Aufgabe bezieht sich auf das Kapitel 1.1. In der Literatur werden die beiden möglichen Binärsymbole meist mit L und 0 bezeichnet. Um die etwas verwirrende Zuordnung aν = 1 für qν = 0 und aν = 0 für qν = L zu vermeiden, werden in unserem Lerntutorial die Symbole L („Low”) und H („High”) verwendet.

Fragebogen

1

Wie groß ist der Symbolabstand?

$T$ =

$\mu s$

2

Handelt es sich hierbei um die unipolare oder bipolare Repräsentation?

Die Symbolfolge ist unipolar.
Die Symbolfolge ist bipolar.


Musterlösung

(1) Entsprechend der Grafik beträgt der Abstand zweier Symbole T = 2 μs.

(2) Bei einer redundanzfreien Binärquelle – und nur bei dieser – ist die Bitrate R = 1/T.

Demzufolge ergibt sich hier R = 500 kbit/s.

(3) Die möglichen Amplitudenkoeffizienten sind ±1. Deshalb ist die gegebene Symbolfolge bipolar.

(4)  (5)  (6)