Applets:Frequenzgang und Impulsantwort: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 130: Zeile 130:
 
==Vorschlag für die Versuchsdurchführung==
 
==Vorschlag für die Versuchsdurchführung==
 
<br>
 
<br>
&bdquo;Rot&rdquo; bezieht sich stets auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $H_1(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$ und &bdquo;Blau&rdquo; den zweiten &nbsp; &rArr; &nbsp; $H_2(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
+
&bdquo;Rot&rdquo; bezieht sich stets auf den ersten Parametersatz &nbsp; &rArr; &nbsp; $H_1(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$ und &bdquo;Blau&rdquo; auf den zweiten &nbsp; &rArr; &nbsp; $H_2(f)  \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gauß&ndash;Tiefpass''' $(K_1 = 1, \Delta f_1 = 1)$  mit dem '''blauen Rechteck&ndash;Tiefpass''' $(K_2 = 1, \Delta f_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung. und beantworten Sie folgende Fragen:<br>
+
'''(1)''' &nbsp; Vergleichen Sie den '''roten Gauß&ndash;Tiefpass''' $(K_1 = 1, \Delta f_1 = 1)$  mit dem '''blauen Rechteck&ndash;Tiefpass''' $(K_2 = 1, \Delta f_2 = 1)$  &nbsp; &rArr; &nbsp; Voreinstellung&nbsp; ] &nbsp; und beantworten Sie folgende Fragen:<br>
 
*Welche Signale $y(t)$ treten am Ausgang der Tiefpässe auf, wenn am Eingang das Signal $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $f_0 = 0.5$ anliegt?
 
*Welche Signale $y(t)$ treten am Ausgang der Tiefpässe auf, wenn am Eingang das Signal $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $f_0 = 0.5$ anliegt?
*Welche Unterschiede ergeben sich  bei beiden Tiefpässen mit $f_0 = 0.5 \pm f_\varepsilon$, wobei $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?}}
+
*Welche Unterschiede ergeben sich  bei beiden Tiefpässen mit $f_0 = 0.5 \pm f_\varepsilon$ und $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?}}
  
  
*In beiden Fällen gilt $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 0.912, A_2 = 1.000$. Die Phase $\varphi_0$ bleibt erhalten.
+
*In beiden Fällen gilt $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 2 \cdot 0.456 = 0.912, A_2 = 2 \cdot 0.5 =1.000$. Die Phase $\varphi_0$ bleibt erhalten.
  
 
*Beim Gauß&ndash;Tiefpass gilt weiterhin $ A_1 = 0.912$. Beim  Rechteck&ndash;Tiefpass ist $A_2 = 0$ für $f_0 = 0.5000\text{...}001$ und $A_2 = 2$ für $f_0 = 0.4999\text{...}999$.  
 
*Beim Gauß&ndash;Tiefpass gilt weiterhin $ A_1 = 0.912$. Beim  Rechteck&ndash;Tiefpass ist $A_2 = 0$ für $f_0 = 0.5000\text{...}001$ und $A_2 = 2$ für $f_0 = 0.4999\text{...}999$.  
Zeile 149: Zeile 149:
  
 
*Um das erste Nyquistkriterium zu erfüllen, muss die Impulsantwort $h(t)$ äquidistante Nulldurchgänge bei Vielfachen der (normierten) Zeit $t = 1, 2$, ... aufweisen. Die Impulsantwort $h(t) = {\rm si}(\pi \cdot  \Delta f \cdot t)$ des  Rechteck&ndash;Tiefpasses erfüllt dieses Kriterium mit  $\Delta f = 1$. Dagegen ist beim Gauß&ndash;Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]].
 
*Um das erste Nyquistkriterium zu erfüllen, muss die Impulsantwort $h(t)$ äquidistante Nulldurchgänge bei Vielfachen der (normierten) Zeit $t = 1, 2$, ... aufweisen. Die Impulsantwort $h(t) = {\rm si}(\pi \cdot  \Delta f \cdot t)$ des  Rechteck&ndash;Tiefpasses erfüllt dieses Kriterium mit  $\Delta f = 1$. Dagegen ist beim Gauß&ndash;Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu [[Digitalsignalübertragung/Ursachen_und_Auswirkungen_von_Impulsinterferenzen|Impulsinterferenzen]].
*Das zweite Nyquistkriterium erfüllt der Rechteck&ndash;Tiefpass dagegen nicht.  
+
*Das zweite Nyquistkriterium erfüllt der Rechteck&ndash;Tiefpass ebenso nicht wie der Gauß&ndash;Tiefpass.  
  
  
  
 
  {{BlaueBox|TEXT=   
 
  {{BlaueBox|TEXT=   
'''(3)''' &nbsp; Vergleichen Sie den '''roten Trapez&ndash;Tiefpass''' $(K_1 = 1, \Delta f_1 = 1, r_1 = 0.5)$  mit dem '''blauen Rechteck&ndash;Tiefpass''' $(K_2 = 1, \Delta f_2 = 1)$ und variieren Sie anschließend $r_1$ zwischen $0$ und $1$. }}
+
'''(3)''' &nbsp; Vergleichen Sie den '''roten Rechteck&ndash;Tiefpass''' $(K_1 = 0.5, \Delta f_1 = 2)$  mit dem '''blauen Rechteck&ndash;Tiefpass''' $(K_2 = 1, \Delta f_2 = 1)$ und variieren Sie anschließend $\Delta f_1$ zwischen $2$ und $0.5$. }}
 +
 
 +
 
 +
*Bei der Einstellung $\Delta f_1 = 2$ liegen die Nullstellen der Impulsantwort bei Vielfachen von $0.5$. Die Impulsantwort $h_1(t)$ klingt also doppelt so schnell ab als die Impulsantwort $h_2(t)$ des schmalbandigeren Tiefpasses $H_1(f)$.
 +
*Mit dieser Einstellung gilt $h_1(t = 0) = h_2(t = 0)$, da die Rechteckflächen von $H_1(f)$ und $H_1(f)$ gleich sind. .
 +
*Verringert man man $\Delta f_1$, so wird  die Impulsantwort $h_1(t)$ immer breiter und niedriger. Mit $\Delta f_1 = 0.5$ ist $h_1(t)$ doppelt so breit wie $h_2(t)$, gleichzeitig aber um den Faktor $4$ niedriger.
 +
 
 +
 
 +
 
 +
{{BlaueBox|TEXT= 
 +
'''(4)''' &nbsp; Vergleichen Sie den '''roten Trapez&ndash;Tiefpass''' $(K_1 = 1, \Delta f_1 = 1, r_1 = 0.5)$  mit dem '''blauen Rechteck&ndash;Tiefpass''' $(K_2 = 1, \Delta f_2 = 1)$ und variieren Sie anschließend $r_1$ zwischen $0$ und $1$. }}
  
  

Version vom 30. Oktober 2017, 12:20 Uhr


Applet in neuem Tab öffnen

Programmbeschreibung


Dargestellt werden reelle und symmetrische Tiefpässe $H(f)$ und die dazugehörigen Impulsantworten $h(t)$, nämlich

  • Gauß–Tiefpass (englisch: Gaussian low–pass),
  • Rechteck–Tiefpass (englisch: Rectangular low–pass),
  • Dreieck–Tiefpass (englisch: Triangular low–pass),
  • Trapez–Tiefpass (englisch: Trapezoidal low–pass),
  • Cosinus–Rolloff–Tiefpass (englisch: Cosine-rolloff low–pass),
  • Cosinus-Quadrat-Tiefpass (englisch: Cosine-rolloff -squared Low–pass).


Das aufzurufende Applet verwendet die englischen Begriffe im Gegensatz zu dieser deutschen Beschreibung. Die englische Beschreibung finden Sie unter Englische Version: Frequency & Pulse response.


Weiter ist zu beachten:

  • Die Funktionen $H(f)$ bzw. $h(t)$ werden für bis zu zwei Parametersätzen in jeweils einem Diagramm dargestellt.
  • Die orangenfarbenen („roten”) Kurven und Zahlenangaben gelten für den linken Parametersatz, die blauen für den rechten Parametersatz.
  • Die Abszissen $t$ (Zeit) und $f$ (Frequenz) sowie die Ordinaten $H(f)$ und $h(t)$ sind jeweils normiert.


Theoretischer Hintergrund


Frequenzgang $H(f)$ und Impulsantwort $h(t)$

  • Der Frequenzgang (oder auch die Übertragungsfunktion) eines linearen zeitinvarianten Übertragungssystems $H(f)$ gibt das Verhältnis zwischen dem Ausgangsspektrum $Y(f)$ und dem dem Eingangsspektrum $X(f)$ an:
$$H(f) = \frac{Y(f)}{X(f)}.$$
  • Ist das Übertragungsverhalten bei tiefen Frequenzen besser als bei höheren, so spricht man von einem Tiefpass (englisch: Low-pass).
  • Die Eigenschaften von $H(f)$ werden im Zeitbereich durch die Impulsantwort $h(t)$ ausgedrückt. Entsprechend dem zweiten Fourierintegral gilt:
$$h(t)={\rm IFT} [H(f)] = \int_{-\infty}^{+\infty}H(f)\cdot {\rm e}^{+{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}f\hspace{1cm} {\rm IFT}\hspace{-0.1cm}: \rm Inverse \ Fouriertransformation.$$
$$H(f)={\rm FT} [h(t)] = \int_{-\infty}^{+\infty}h(t)\cdot {\rm e}^{-{\rm j}2\pi f t}\hspace{0.15cm} {\rm d}t\hspace{1cm} \rm FT\hspace{-0.1cm}: \ Fouriertransformation.$$
  • In allen Beispielen verwenden wir reelle und gerade Funktionen. Somit gilt:
$$h(t)=\int_{-\infty}^{+\infty}H(f)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}f \ \ \circ\!\!-\!\!\!-\!\!\!-\!\!\bullet\ \ \ H(f)=\int_{-\infty}^{+\infty}h(t)\cdot \cos(2\pi ft) \hspace{0.15cm} {\rm d}t .$$
  • Bei einem Vierpol   ⇒   $X(f)$ und $Y(f)$ haben gleiche Einheiten]   ist $Y(f)$ dimensionslos. Die Einheit der Impulsantwort ist $\rm 1/s$. Es gilt zwar $\rm 1/s = 1 \ Hz$, aber die Einheit „Hertz” ist in diesem Zusammenhang unüblich.
  • Der Zusammenhang zwischen diesem Modul „Frequenzgang & Impulsantwort” und dem ähnlich aufgebauten Applet Impulse und Spektren basiert auf dem Vertauschungssatz.
  • Alle Zeiten sind auf eine Normierungszeit $T$ normiert und alle Frequenzen auf $1/T \Rightarrow$ die Impulsantwortwerte $h(t)$ müssen noch durch die Normierungszeit $T$ dividiert werden.


$\text{Beispiel:}$  Stellt man einen Rechteck–Tiefpass mit Höhe $K_1 = 1$ und äquivalenter Bandbreite $\Delta f_1 = 1$ ein, so ist der Frequenzgang $H_1(f)$ im Bereich $-1 < f < 1$ gleich $1$ und außerhalb dieses Bereichs gleich $0$. Die Impulsantwort $h_1(t)$ verläuft si–förmig mit $h_1(t= 0) = 1$ und der ersten Nullstelle bei $t=1$.

Mit dieser Einstellung soll nun ein Rechteck–Tiefpass mit $K = 1.5$ und $\Delta f = 2 \ \rm kHz$ nachgebildet werden, wobei wir die Normierungszeit $T= 1 \ \rm ms$. Dann liegt die erste Nullstelle bei $t=0.5\ \rm ms$ und das Impulsantwortmaximum ist dann $h(t= 0) = 3 \cdot 10^3 \ \rm 1/s$.


Gauß–Tiefpass   $\Rightarrow$   Gaussian Low–pass

  • Der Gauß–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
$$H(f)=K\cdot {\rm e}^{-\pi\cdot(f/\Delta f)^2}.$$
  • Die äquivalente Bandbreite $\Delta f$ ergibt sich aus dem flächengleichen Rechteck.
  • Der Wert bei $f = \Delta f/2$ ist um den Faktor $0.456$ kleiner als der Wert bei $f=0$.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm e}^{-\pi(t\cdot \Delta f)^2} .$$
  • Je kleiner $\Delta f$ ist, um so breiter und niedriger ist die Impulsantwort   ⇒   Reziprozitätsgesetz von Bandbreite und Impulsdauer.
  • Sowohl $H(f)$ als auch $h(t)$ sind zu keinem $f$- bzw. $t$-Wert exakt gleich Null.
  • Für praktische Anwendungen kann der Gaußimpuls jedoch in Zeit und Frequenz als begrenzt angenommen werden. Zum Beispiel ist $h(t)$ bereits bei $t=1.5 \cdot \Delta t$ auf weniger als $0.1\% $ des Maximums abgefallen.

Idealer (rechteckförmiger) Tiefpass   $\Rightarrow$   Rectangular Low–pass

  • Der Rechteck–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K /2 \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f/2,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| = \Delta f/2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| > \Delta f/2.} \\ \end{array}$$
  • Der $\pm \Delta f/2$–Wert liegt mittig zwischen links- und rechtsseitigem Grenzwert.
  • Für die Impulsantwort $h(t)$ erhält man entsprechend den Gesetzmäßigkeiten der Fourierrücktransformation (2. Fourierintegral):
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t) \quad \text{mit} \ {\rm si}(x)={\sin(x)}/{x}.$$
  • Der $h(t)$–Wert bei $t=0$ ist gleich der Rechteckfläche des Frequenzgangs.
  • Die Impulsantwort besitzt Nullstellen in äquidistanten Abständen $1/\Delta f$.
  • Das Integral über die Impulsantwort $h(t)$ ist gleich dem Frequenzgang $H(f)$ bei der Frequenz $f=0$, also gleich $K$.

Dreieck–Tiefpass $\Rightarrow$ Triangular Low–pass

  • Der Dreieck–Tiefpass lautet mit der Höhe $K$ und der (äquivalenten) Bandbreite $\Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \Big(1-\frac{|f|}{\Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Die absolute physikalische Bandbreite $B$   ⇒   nur positive Frequenzen]   ist ebenfalls gleich $\Delta f$, also so groß wie beim Rechteck–Tiefpass.
  • Für die Impulsantwort $h(t)$ erhält man gemäß der Fouriertransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}^2(\pi\cdot \Delta f \cdot t) \quad \text{mit} \ {\rm si}(x)={\sin(x)}/{x}.$$
  • $H(f)$ kann man als Faltung zweier Rechteckfunktionen (jeweils mit Breite $\Delta f$) darstellen.
  • Daraus folgt: $h(t)$ beinhaltet anstelle der ${\rm si}$-Funktion die ${\rm si}^2$-Funktion.
  • $h(t)$ weist somit ebenfalls Nullstellen im äquidistanten Abständen $1/\Delta f$ auf.
  • Der asymptotische Abfall von $h(t)$ erfolgt hier mit $1/t^2$, während zum Vergleich beim Rechteck–Tiefpass $h(t)$ mit $1/t$ abfällt.


Trapez–Tiefpass   $\Rightarrow$   Trapezoidal Low–pass

Der Trapez–Tiefpass lautet mit der Höhe $K$ und den Eckfrequenzen $f_1$ und $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \frac{f_2-|f|}{f_2-f_1} \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite (flächengleiches Rechteck) gilt: $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall $r=0$ entspricht dem Rechteck–Tiefpass und der Sonderfall $r=1$ dem Dreieck–Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\rm si}(\pi\cdot \Delta f \cdot t)\cdot {\rm si}(\pi \cdot r \cdot \Delta f \cdot t) \quad \text{mit} \ {\rm si}(x)={\sin(x)}/{x}.$$
  • Der asymptotische Abfall von $h(t)$ liegt zwischen $1/t$ (für Rechteck–Tiefpass oder $r=0$) und $1/t^2$ (für Dreieck–Tiefpass oder $r=1$).


Cosinus-Rolloff-Tiefpass   $\Rightarrow$   Cosine-rolloff Low–pass

Der Cosinus–Rolloff–Tiefpass lautet mit der Höhe $K$ und den Eckfrequenzen $f_1$ und $f_2$:

$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K \\ K\cdot \cos^2\Big(\frac{|f|-f_1}{f_2-f_1}\cdot \frac{\pi}{2}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| \le f_1,} \\ {f_1\le \left| \hspace{0.05cm}f\hspace{0.05cm} \right| \le f_2,} \\ {\left|\hspace{0.05cm} f \hspace{0.05cm} \right| \ge f_2.} \\ \end{array}$$
  • Für die äquivalente Bandbreite (flächengleiches Rechteck) gilt: $\Delta f = f_1+f_2$.
  • Der Rolloff-Faktor (im Frequenzbereich) kennzeichnet die Flankensteilheit:
$$r=\frac{f_2-f_1}{f_2+f_1}.$$
  • Der Sonderfall $r=0$ entspricht dem Rechteck–Tiefpass der Sonderfall $r=1$ dem Cosinus-Quadrat-Tiefpass.
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot \frac{\cos(\pi \cdot r\cdot \Delta f \cdot t)}{1-(2\cdot r\cdot \Delta f \cdot t)^2} \cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Je größer der Rolloff-Faktor $r$ ist, desto schneller nimmt $h(t)$ asymptotisch mit $t$ ab.


Cosinus-Quadrat-Tiefpass   $\Rightarrow$   Cosine-rolloff -squared Low–pass

  • Dies ist ein Sonderfall des Cosinus–Rolloff–Tiefpasses und ergibt sich aus diesem für $r=1 \hspace{0.3cm} \Rightarrow \hspace{0.3cm}f_1=0, f_2= \Delta f$:
$$H(f) = \left\{ \begin{array}{l} \hspace{0.25cm}K\cdot \cos^2\Big(\frac{|f|\cdot \pi}{2\cdot \Delta f}\Big) \\ \hspace{0.25cm} 0 \\ \end{array} \right.\quad \quad \begin{array}{*{20}c} {\rm{f\ddot{u}r}} \\ {\rm{f\ddot{u}r}} \\ \end{array}\begin{array}{*{20}c} {\left| \hspace{0.05cm} f\hspace{0.05cm} \right| < \Delta f,} \\ {\left| \hspace{0.05cm}f\hspace{0.05cm} \right| \ge \Delta f.} \\ \end{array}$$
  • Für die Impulsantwort erhält man gemäß der Fourierrücktransformation:
$$h(t)=K\cdot \Delta f \cdot {\pi}/{4}\cdot \big [{\rm si}(\pi(\Delta f\cdot t +0.5))+{\rm si}(\pi(\Delta f\cdot t -0.5))\big ]\cdot {\rm si}(\pi \cdot \Delta f \cdot t).$$
  • Wegen der letzten ${\rm si}$-Funktion ist $h(t)=0$ für alle Vielfachen von $T=1/\Delta f$   ⇒   Die äquidistanten Nulldurchgänge des Cosinus–Rolloff–Tiefpasses bleiben erhalten.
  • Aufgrund des Klammerausdrucks weist $h(t)$ nun weitere Nulldurchgänge bei $t=\pm1.5 T$, $\pm2.5 T$, $\pm3.5 T$, ... auf.
  • Für $t=\pm T/2$ hat die Impulsanwort den Wert $K\cdot \Delta f/2$.
  • Der asymptotische Abfall von $h(t)$ verläuft in diesem Sonderfall mit $1/t^3$.

Vorschlag für die Versuchsdurchführung


„Rot” bezieht sich stets auf den ersten Parametersatz   ⇒   $H_1(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_1(t)$ und „Blau” auf den zweiten   ⇒   $H_2(f) \bullet\!\!-\!\!\!-\!\!\!-\!\!\circ\ h_2(t)$.

(1)   Vergleichen Sie den roten Gauß–Tiefpass $(K_1 = 1, \Delta f_1 = 1)$ mit dem blauen Rechteck–Tiefpass $(K_2 = 1, \Delta f_2 = 1)$   ⇒   Voreinstellung  ]   und beantworten Sie folgende Fragen:

  • Welche Signale $y(t)$ treten am Ausgang der Tiefpässe auf, wenn am Eingang das Signal $x(t) = 2 \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $f_0 = 0.5$ anliegt?
  • Welche Unterschiede ergeben sich bei beiden Tiefpässen mit $f_0 = 0.5 \pm f_\varepsilon$ und $f_\varepsilon \ne 0, \ f_\varepsilon \to 0$?


  • In beiden Fällen gilt $y(t) = A \cdot \cos (2\pi f_0 t -\varphi_0)$ mit $A = 2 \cdot H(f = f_0) \ \Rightarrow \ A_1 = 2 \cdot 0.456 = 0.912, A_2 = 2 \cdot 0.5 =1.000$. Die Phase $\varphi_0$ bleibt erhalten.
  • Beim Gauß–Tiefpass gilt weiterhin $ A_1 = 0.912$. Beim Rechteck–Tiefpass ist $A_2 = 0$ für $f_0 = 0.5000\text{...}001$ und $A_2 = 2$ für $f_0 = 0.4999\text{...}999$.


(2)   Lassen Sie die Einstellungen unverändert. Welcher Tiefpass kann das erste Nyquistkriterium oder das zweite Nyquistkriterium erfüllen, wenn $H(f)$ den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter bezeichnet?


  • Um das erste Nyquistkriterium zu erfüllen, muss die Impulsantwort $h(t)$ äquidistante Nulldurchgänge bei Vielfachen der (normierten) Zeit $t = 1, 2$, ... aufweisen. Die Impulsantwort $h(t) = {\rm si}(\pi \cdot \Delta f \cdot t)$ des Rechteck–Tiefpasses erfüllt dieses Kriterium mit $\Delta f = 1$. Dagegen ist beim Gauß–Tiefpass das erste Nyquistkriterium nie erfüllt und es kommt immer zu Impulsinterferenzen.
  • Das zweite Nyquistkriterium erfüllt der Rechteck–Tiefpass ebenso nicht wie der Gauß–Tiefpass.


(3)   Vergleichen Sie den roten Rechteck–Tiefpass $(K_1 = 0.5, \Delta f_1 = 2)$ mit dem blauen Rechteck–Tiefpass $(K_2 = 1, \Delta f_2 = 1)$ und variieren Sie anschließend $\Delta f_1$ zwischen $2$ und $0.5$.


  • Bei der Einstellung $\Delta f_1 = 2$ liegen die Nullstellen der Impulsantwort bei Vielfachen von $0.5$. Die Impulsantwort $h_1(t)$ klingt also doppelt so schnell ab als die Impulsantwort $h_2(t)$ des schmalbandigeren Tiefpasses $H_1(f)$.
  • Mit dieser Einstellung gilt $h_1(t = 0) = h_2(t = 0)$, da die Rechteckflächen von $H_1(f)$ und $H_1(f)$ gleich sind. .
  • Verringert man man $\Delta f_1$, so wird die Impulsantwort $h_1(t)$ immer breiter und niedriger. Mit $\Delta f_1 = 0.5$ ist $h_1(t)$ doppelt so breit wie $h_2(t)$, gleichzeitig aber um den Faktor $4$ niedriger.


(4)   Vergleichen Sie den roten Trapez–Tiefpass $(K_1 = 1, \Delta f_1 = 1, r_1 = 0.5)$ mit dem blauen Rechteck–Tiefpass $(K_2 = 1, \Delta f_2 = 1)$ und variieren Sie anschließend $r_1$ zwischen $0$ und $1$.


  • Bei der Einstellung $r_1 = 0.5$ sind die Unterschwinger in der Impulsantwort $h(t)$ beim Trapez–Tiefpass aufgrund des flacheren Flankenabfalls geringer als beim Rechteck–Tiefpass.
  • Je kleiner der Roll–off–Faktor $r_1$ wird, desto größer werden die Unterschwinger. Bei $r_1= 0$ ist der Trapez–Tiefpass identisch mit dem Rechteck–Tiefpass   ⇒   $h(t)= {\rm si}(\pi \cdot t)$.
  • Erhöht man dagegen den Roll–off–Faktor $r_1$, so größer werden die Unterschwinger kleiner. Bei $r_1= 1$ ist der Trapez–Tiefpass identisch mit dem Dreieck–Tiefpass   ⇒   $h(t)= {\rm si}^2(\pi \cdot t)$.


(4)   Vergleichen Sie den roten Trapez–Tiefpass $(K_1 = 1, \Delta f_1 = 1, r_1 = 0.5)$ mit dem blauen Cosinus-Rolloff-Tiefpass $(K_2 = 1,\Delta f_2 = 1, r_2 = 0.5)$. Variieren Sie $r_2$ zwischen $0$ und $1$. Interpretieren Sie die Impulsantwort $h_2(t)$ für $r_2 = 0.7$ im Vergleich zu $h_1(t)$.


  • Bei gleichem Rolloff-Faktor $r_1 = r_2= 0.5$ verläuft der Flankenabfall des Cosinus-Rolloff-Tiefpasses $H_2(f)$ um die Frequenz $f = 0.5$ steiler als der Flankenabfall des Trapez–Tiefpasses $H_2(f)$.
  • Der Vergleich der zugehörigen Impulsantworten bei gleichem Rolloff-Faktor $r= 0.5$ zeigt, dass $h_2(t)$ für $t > 1$ betragsmäßig größere Anteile besitzt als $h_1(t)$.
  • Mit $r_1 = 0.5$ und $r_2 = 0.7$ gilt $H_1(f) \approx H_2(f)$ und damit auch $h_1(t) \approx h_2(t)$.


(5)   Vergleichen Sie den roten Trapez–Tiefpass $(K_1 = 1, \Delta f_1 = 1, r_1 = 1)$ mit dem blauen Cosinus–Rolloff–Tiefpass $(K_2 = 1,\Delta f_2 = 1.0, r_2 = 1)$. Welcher Tiefpass erfüllt das erste Nyquistkriterium und/oder das zweite Nyquistkriterium, wenn $H(f)$ den Gesamtfrequenzgang von Sender, Kanal und Empfangsfilter bezeichnet?


  • Beide Frequenzgänge $H_1(f)$ und $H_2(f)$ erfüllen das erste Nyquistkriterium, da die Funktionen bei $\Delta f = 1$ punktsymmetrisch um den Punkt $f = f_{\rm Nyq} = 1/2, \ H(f_{\rm Nyq}) = K/2$ sind.
  • Wegen $\Delta f = 1$ besitzen sowohl $h_1(t)$ als auch $h_2(t)$ Nulldurchgänge bei $\pm 1$, $\pm 2$, ...   ⇒   die vertikale Augenöffnung ist in beiden Fällen maximal.
  • Soll das zweite Nyquistkriterium erfüllt sein, so muss die Impulsantwort weitere Nulldurchgänge bei $t=\pm 1.5$, $\pm 2.5$, $\pm 3.5$, ... aufweisen (nicht jedoch bei $t = \pm 0.5$).
  • Beim Trapez–Tiefpass $(K_1 = 1, \Delta f_1 = 1, r_1 = 1)$ gilt $h_1(t=\pm 0.5) = 0.405$, $h_1(t=\pm 1.5) = 0.045$, $h_1(t=\pm 2.5) = 0.016$   ⇒   hier ist das zweite Nyquistkriterium nicht erfüllt.
  • Beim Cosinus–Rolloff–Tiefpass $(K_2 = 1, \Delta f_2 = 1, r_2 = 1)$ gilt dagegen $h_2(t=\pm 0.5) = 0.5$, $h_2(t=\pm 1.5) = 0$, $h_2(t=\pm 2.5) = 0$   ⇒   hier ist das zweite Nyquistkriterium erfüllt.
  • Der asymptotische Abfall von $h(t)$ verläuft in diesem Sonderfall mit $1/t^3$. Kein anderer Tiefpass als der Cosinus–Rolloff–Tiefpass mit Rolloff $r=1$   ⇒   Cosinus-Quadrat-Tiefpass erfüllt das erste und zweite Nyquistkriterium gleichzeitig.


Zur Handhabung des Programms

Frequenzgang version1.png

    (A)     Bereich der graphischen Darstellung für $H(f)$

    (B)     Bereich der graphischen Darstellung für $h(t)$

    (C)     Variationsmöglichkeit für die graphischen Darstellungen

    (D)     Parametereingabe per Slider
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”

    (E)     Parameter entsprechend der Voreinstellung   ⇒   „Reset”

    (F)     Einstellung von $t_*$ und $f_*$ für Numerikausgabe

    (G)     Numerikausgabe von $H(f_*)$ und $h(t_*)$
                      links (rot): „Low–pass 1”,         rechts (blau): „Low–pass 2”


Details zum obigen Punkt (C)

    (*)   Zoom–Funktionen „$+$” (Vergrößern), „$-$” (Verkleinern) und $\rm o$ (Zurücksetzen)

    (*)   Verschiebe–Funktionen „$\leftarrow$” (Bildausschnitt nach links, Ordinate nach rechts) sowie „$\uparrow$” „$\downarrow$” „$\rightarrow$”


Andere Möglichkeiten:

  • Bei gedrückter Shifttaste und Scrollen kann im Koordinatensystem gezoomt werden.
  • Bei gedrückter Shifttaste und gedrückter linker Maustaste kann das Koordinatensystem verschoben werden.



Über die Autoren

Dieses interaktive Berechnungstool wurde am Lehrstuhl für Nachrichtentechnik der Technischen Universität München konzipiert und realisiert.

  • Die erste Version wurde 2005 von Ji Li im Rahmen ihrer Diplomarbeit mit „FlashMX–Actionscript” erstellt (Betreuer: Günter Söder und Klaus Eichin).
  • 2017 wurde „Impulse & Spektren” von David Jobst im Rahmen seiner Ingenieurspraxis (Betreuer: Tasnád Kernetzky) auf „HTML5” umgesetzt und neu gestaltet.

Nochmalige Aufrufmöglichkeit des Applets in neuem Fenster

Applet in neuem Tab öffnen