Aufgaben:Aufgabe 3.11: Viterbi-Empfänger und Trellisdiagramm: Unterschied zwischen den Versionen
Zeile 16: | Zeile 16: | ||
''Hinweise:'' | ''Hinweise:'' | ||
*Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi–Empfänger]]. | *Die Aufgabe gehört zum Kapitel [[Digitalsignal%C3%BCbertragung/Viterbi%E2%80%93Empf%C3%A4nger|Viterbi–Empfänger]]. | ||
+ | Bezug genommen wird auch auf den Abschnitt [[Digitalsignalübertragung/Optimale_Empfängerstrategien#MAP.E2.80.93_und_Maximum.E2.80.93Likelihood.E2.80.93Entscheidungsregel|MAP– und Maximum–Likelihood–Entscheidungsregel]]. | ||
*Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | *Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
* Alle Größen sind hier normiert zu verstehen. Gehen Sie izudem von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus: ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$ | * Alle Größen sind hier normiert zu verstehen. Gehen Sie izudem von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus: ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$ | ||
− | * Die | + | * Die Thematik wird auch im Interaktionsmodul [[Eigenschaften des Viterbi–Empfängers]] behandelt. |
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Welche der | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
− | + Das Matched–Filter dient vorwiegend der Störleistungsbegrenzung. | + | + Das Matched–Filter $H_{\rm MF}(f)$ dient vorwiegend der Störleistungsbegrenzung. |
− | + Das Dekorrelationsfilter entfernt Bindungen | + | + Das Dekorrelationsfilter entfernt Bindungen zwischen den Abtastwerten. |
- Die Störleistung wird nur von $H_{\rm MF}(f)$, nicht von $H_{\rm DF}(f)$ beeinflusst. | - Die Störleistung wird nur von $H_{\rm MF}(f)$, nicht von $H_{\rm DF}(f)$ beeinflusst. | ||
Zeile 39: | Zeile 40: | ||
{Wie lautet die vom Viterbi–Empfänger entschiedene Folge? | {Wie lautet die vom Viterbi–Empfänger entschiedene Folge? | ||
|type="{}"} | |type="{}"} | ||
− | $a_1$ | + | $a_1 \ = \ $ { 0. } |
− | $a_2$ | + | $a_2 \ = \ ${ 0. } |
− | $a_3$ | + | $a_3 \ = \ $ { 1 } |
− | $a_4$ | + | $a_4 \ = \ $ { 0. } |
− | $a_5$ | + | $a_5 \ = \ $ { 0. } |
− | {Welche der folgenden Aussagen | + | {Welche der folgenden Aussagen sind zutreffend? |
|type="[]"} | |type="[]"} | ||
- Es ist sicher, dass die erkannte Folge auch gesendet wurde. | - Es ist sicher, dass die erkannte Folge auch gesendet wurde. | ||
+ Ein MAP–Empfänger hätte die gleiche Fehlerwahrscheinlichkeit. | + Ein MAP–Empfänger hätte die gleiche Fehlerwahrscheinlichkeit. | ||
− | - Schwellenwertentscheidung ist gleich gut wie | + | - Schwellenwertentscheidung ist gleich gut wie dieser Maximum–Likelihood–Empfänger. |
</quiz> | </quiz> | ||
Version vom 3. November 2017, 13:55 Uhr
Der Viterbi–Empfänger erlaubt eine aufwandsgünstige Realisierung der Maximum–Likelihood–Entscheidungsregel. Er beinhaltet die im Folgenden aufgeführten Systemkomponenten:
- ein an den Sendegrundimpuls angepasse Matched–Filter mit Frequenzgang $H_{\rm MF}(f)$ und Ausgangssignal $m(t)$,
- einen Abtaster im Abstand der Symboldauer (Bitdauer) $T$, der das zeitkontinuierliche Signal $m(t)$ in die zeitdiskrete Folge $〈m_{\rm \nu}〉$ wandelt,
- ein Dekorrelationsfilter mit Frequenzgang $H_{\rm DF}(f)$ zur Entfernung statistischer Bindungen zwischen den Störanteilen der Folge $〈d_{\rm \nu}〉$,
- den Viterbi–Entscheider, der mit einem trellisbasierten Algorithmus die Sinkensymbolfolge $〈v_{\rm \nu}〉$ gewinnt.
Die Grafik zeigt das vereinfachte Trellisdiagramm der beiden Zustände „$0$” und „$1$” für die Zeitpunkte $\nu ≤ 5$. Dieses Diagramm erhält man als Ergebnis der Auswertung der beiden minimalen Gesamtfehlergrößen ${\it \Gamma}_{\rm \nu}(0)$ und ${\it \Gamma}_{\rm \nu}(1)$ entsprechend der Aufgabe 3.11Z.
Hinweise:
- Die Aufgabe gehört zum Kapitel Viterbi–Empfänger.
Bezug genommen wird auch auf den Abschnitt MAP– und Maximum–Likelihood–Entscheidungsregel.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Alle Größen sind hier normiert zu verstehen. Gehen Sie izudem von unipolaren und gleichwahrscheinlichen Amplitudenkoeffizienten aus: ${\rm Pr} (a_\nu = 0) = {\rm Pr} (a_\nu = 1)= 0.5.$
- Die Thematik wird auch im Interaktionsmodul Eigenschaften des Viterbi–Empfängers behandelt.
Fragebogen
Musterlösung
(2) Die beiden bei $\underline {\nu = 1}$ ankommenden Pfeile sind jeweils blau gezeichnet und kennzeichnen das Symbol $a_1 = 0$. Somit ist bereits zu diesem Zeitpunkt das Ausgangssymbol $a_1$ festgelegt. Ebenso stehen die Symbole $a_3 = 1$ und $a_5 = 0$ bereits zu den Zeitpunkten $\underline {\nu = 3}$ bzw. $\underline {\nu = 5}$ fest.
Dagegen ist zum Zeitpunkt $\nu = 2$ eine Entscheidung bezüglich des Symbols $a_2$ nicht möglich. Unter der Hypothese, dass das nachfolgende Symbol $a_3 = 0$ sein wird, würde sich Symbol $a_2 = 1$ ergeben (bei „$0$” kommt ein roter Pfad an, also von „$1$” kommend). Dagegen führt die Hypothese $a_3 = 1$ zum Ergebnis $a_2 = 0$ (der bei „$1$” ankommende Pfad ist blau).
(3) Aus den durchgehenden Pfaden bei $\nu = 5$ ist ersichtlich:
- $$a_{1}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{2}\hspace{0.15cm}\underline { =0} \hspace{0.05cm},\hspace{0.2cm}a_{3}\hspace{0.15cm}\underline {=1} \hspace{0.05cm},\hspace{0.2cm} a_{4}\hspace{0.15cm}\underline {=0} \hspace{0.05cm},\hspace{0.2cm} a_{5}\hspace{0.15cm}\underline {=0} \hspace{0.05cm}.$$
(4) Richtig ist nur die zweite Aussage: Da die Quellensymbole „$0$” und „$1$” als gleichwahrscheinlich vorausgesetzt wurden, ist der ML–Empfänger (Viterbi) identisch mit dem MAP–Empfänger.
Ein Schwellenwertentscheider – der zu jedem Takt eine symbolweise Entscheidung trifft – hat nur dann die gleiche Fehlerwahrscheinlichkeit wie der Viterbi–Empfänger, wenn es keine Impulsinterferenzen gibt. Dies ist hier offensichtlich nicht der Fall, sonst müsste zu jedem Zeitpunkt $\nu$ eine endgültige Entscheidung getroffen werden können.
Die erste Aussage trifft ebenfalls nicht zu. Das würde nämlich bedeuten, dass der Viterbi–Empfänger die Fehlerwahrscheinlichkeit $0$ haben kann. Dies ist aus der informationstheoretischen Gründen nicht möglich.