Aufgaben:Aufgabe 5.3: AWGN- und BSC-Modell: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 2: Zeile 2:
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
 
{{quiz-Header|Buchseite=Digitalsignalübertragung/Binary Symmetric Channel (BSC)}}
  
 +
[[Datei:P_ID1831__Dig_A_5_3.png|right|frame|AWGN–Kanal und BSC–Modell]]
 +
Die Grafik zeigt oben das analoge Kanalmodell eines digitalen Übertragungssystems, wobei das additive Rauschsignal $n(t)$ mit der Rauschleistungsdichte $N_0/2$ wirksam ist. Es handelt sich um AWGN–Rauschen. Die Varianz des Rauschanteils vor dem Entscheider (nach dem Matched–Filter) ist dann
 +
:$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$
 +
 +
Weiter soll gelten:
 +
* Es treten keine Impulsinterferenzen auf. Wurde das Symbol $q_{\nu} = \boldsymbol{H} \mathbf{H}$ gesendet, so ist der Nutzanteil des Detektionssignal gleich $+s_0$, bei $q_{\nu} = \boldsymbol{L}$ dagegen $–s_0$.
 +
* Der Schwellenwertentscheider berücksichtigt eine Schwellendrift, das heißt, die Schwelle <i>E</i> kann durchaus vom Optimalwert $E = 0$ abweichen. Die <i>Entscheidungsregel</i> lautet:
 +
:$$\upsilon_\nu =
 +
\left\{ \begin{array}{c} \mathbf{H} \\
 +
\mathbf{L} \end{array} \right.\quad
 +
\begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}d (\nu \cdot T) > E  \hspace{0.05cm},
 +
\\  {\rm falls} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$
  
[[Datei:|right|]]
 
  
  
 
===Fragebogen===
 
===Fragebogen===
 
 
<quiz display=simple>
 
<quiz display=simple>
{Multiple-Choice Frage
+
{Multiple-Choice
 
|type="[]"}
 
|type="[]"}
- Falsch
+
+ correct
+ Richtig
+
- false
 
 
  
 
{Input-Box Frage
 
{Input-Box Frage
 
|type="{}"}
 
|type="{}"}
$\alpha$ = { 0.3 }
+
$xyz \ = \ ${ 5.4 3% } $ab$
 
 
 
 
 
 
 
</quiz>
 
</quiz>
  
 
===Musterlösung===
 
===Musterlösung===
 
{{ML-Kopf}}
 
{{ML-Kopf}}
'''(1)'''&nbsp;
+
'''(1)'''&nbsp;  
'''(2)'''&nbsp;
+
'''(2)'''&nbsp;  
'''(3)'''&nbsp;
+
'''(3)'''&nbsp;  
'''(4)'''&nbsp;
+
'''(4)'''&nbsp;  
'''(5)'''&nbsp;
+
'''(5)'''&nbsp;  
'''(6)'''&nbsp;
 
 
 
 
{{ML-Fuß}}
 
{{ML-Fuß}}
  

Version vom 13. November 2017, 21:31 Uhr

AWGN–Kanal und BSC–Modell

Die Grafik zeigt oben das analoge Kanalmodell eines digitalen Übertragungssystems, wobei das additive Rauschsignal $n(t)$ mit der Rauschleistungsdichte $N_0/2$ wirksam ist. Es handelt sich um AWGN–Rauschen. Die Varianz des Rauschanteils vor dem Entscheider (nach dem Matched–Filter) ist dann

$$\sigma^2 = \frac{N_0}{2T} \hspace{0.05cm}.$$

Weiter soll gelten:

  • Es treten keine Impulsinterferenzen auf. Wurde das Symbol $q_{\nu} = \boldsymbol{H} \mathbf{H}$ gesendet, so ist der Nutzanteil des Detektionssignal gleich $+s_0$, bei $q_{\nu} = \boldsymbol{L}$ dagegen $–s_0$.
  • Der Schwellenwertentscheider berücksichtigt eine Schwellendrift, das heißt, die Schwelle E kann durchaus vom Optimalwert $E = 0$ abweichen. Die Entscheidungsregel lautet:
$$\upsilon_\nu = \left\{ \begin{array}{c} \mathbf{H} \\ \mathbf{L} \end{array} \right.\quad \begin{array}{*{1}c} {\rm falls}\hspace{0.15cm}d (\nu \cdot T) > E \hspace{0.05cm}, \\ {\rm falls} \hspace{0.15cm} d (\nu \cdot T) \le E\hspace{0.05cm}.\\ \end{array}$$


Fragebogen

1

Multiple-Choice

correct
false

2

Input-Box Frage

$xyz \ = \ $

$ab$


Musterlösung

(1)  (2)  (3)  (4)  (5)