Aufgaben:Aufgabe 4.4: Maximum–a–posteriori und Maximum–Likelihood: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 7: Zeile 7:
 
:$$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_1 = -1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_1 = 1\hspace{0.05cm}.$$
 
:$$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_1 = -1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_1 = 1\hspace{0.05cm}.$$
  
Die Auftrittswahrscheinlichkeiten sind:
+
*Die Auftrittswahrscheinlichkeiten seien:
 
:$${\rm Pr}(s = s_0) = 0.75,\hspace{0.2cm}{\rm Pr}(s = s_1) = 0.25 \hspace{0.05cm}.$$
 
:$${\rm Pr}(s = s_0) = 0.75,\hspace{0.2cm}{\rm Pr}(s = s_1) = 0.25 \hspace{0.05cm}.$$
  
Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich  
+
*Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich  
 
:$$r = +1,\hspace{0.2cm}r = 0,\hspace{0.2cm}r = -1 \hspace{0.05cm}.$$
 
:$$r = +1,\hspace{0.2cm}r = 0,\hspace{0.2cm}r = -1 \hspace{0.05cm}.$$
  
Die bedingten Kanalwahrscheinlichkeiten können der Grafik entnommen werden.
+
*Die bedingten Kanalwahrscheinlichkeiten können der Grafik entnommen werden.
  
 
Nach der Übertragung soll die gesendete Nachricht durch einen optimalen Empfänger geschätzt werden. Zur Verfügung stehen:
 
Nach der Übertragung soll die gesendete Nachricht durch einen optimalen Empfänger geschätzt werden. Zur Verfügung stehen:
* der <font color="#cc0000"><span style="font-weight: bold;">Maximum&ndash;Likelihood&ndash;Empfänger</span></font> (ML&ndash;Empfänger), der die Auftrittswahrscheinlichkeiten ${\rm Pr}(s = s_i)$ nicht kennt, mit der Entscheidungsregel:
+
* der '''Maximum&ndash;Likelihood&ndash;Empfänger''' (ML&ndash;Empfänger), der die Auftrittswahrscheinlichkeiten ${\rm Pr}(s = s_i)$ nicht kennt, mit der Entscheidungsregel:
 
:$$\hat{m}_{\rm ML} = {\rm arg} \max_i \hspace{0.1cm} [ p_{r |s } \hspace{0.05cm} (\rho  
 
:$$\hat{m}_{\rm ML} = {\rm arg} \max_i \hspace{0.1cm} [ p_{r |s } \hspace{0.05cm} (\rho  
 
|s_i ) ]\hspace{0.05cm},$$
 
|s_i ) ]\hspace{0.05cm},$$
  
* der <font color="#cc0000"><span style="font-weight: bold;">Maximum&ndash;a&ndash;posteriori&ndash;Empfänger</span></font> (MAP&ndash;Empfänger); dieser berücksichtigt bei seinem Entscheidungsprozess auch die Symbolwahrscheinlichkeiten der Quelle:
+
* der '''Maximum&ndash;a&ndash;posteriori&ndash;Empfänger''' (MAP&ndash;Empfänger); dieser berücksichtigt bei seinem Entscheidungsprozess auch die Symbolwahrscheinlichkeiten der Quelle:
 
:$$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( s = s_i) \cdot p_{r |s } \hspace{0.05cm} (\rho  
 
:$$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( s = s_i) \cdot p_{r |s } \hspace{0.05cm} (\rho  
 
|s_i ) ]\hspace{0.05cm}.$$
 
|s_i ) ]\hspace{0.05cm}.$$
Zeile 26: Zeile 26:
  
 
''Hinweise:''  
 
''Hinweise:''  
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Signale,_Basisfunktionen_und_Vektorr%C3%A4ume| Signale, Basisfunktionen und Vektorräume]].
+
*Die Aufgabe gehört zum  Kapitel  [[Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien| Optimale Empfängerstrategien]].
 +
*Bezug genommen wird auch auf das Kapitel [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers| Struktur des optimalen Empfängers]].
 +
* Die notwendigen statistischen Grundlagen finden Sie im Kapitel [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit| Statistische Abhängigkeit und Unabhängigkeit]] des Buches &bdquo;Stochastische Signaltheorie&rdquo;.  
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
 
*Sollte die Eingabe des Zahlenwertes &bdquo;0&rdquo; erforderlich sein, so geben Sie bitte &bdquo;0.&rdquo; ein.
  
''Hinweise:''
+
 
* Diese Aufgabe bezieht sich auf das Kapitel [[Digitalsignal%C3%BCbertragung/Optimale_Empf%C3%A4ngerstrategien| Optimale Empfängerstrategien]] sowie das Kapitel [[Digitalsignal%C3%BCbertragung/Struktur_des_optimalen_Empf%C3%A4ngers| Struktur des optimalen Empfängers]] des vorliegenden Buches.
 
* Die notwendigen statistischen Grundlagen finden Sie im Kapitel [[Stochastische_Signaltheorie/Statistische_Abh%C3%A4ngigkeit_und_Unabh%C3%A4ngigkeit| Statistische Abhängigkeit und Unabhängigkeit]] des Buches &bdquo;Stochastische Signaltheorie&rdquo;.
 
  
  
Zeile 38: Zeile 38:
 
{Mit welchen Wahrscheinlichkeiten treten die Empfangswerte auf?
 
{Mit welchen Wahrscheinlichkeiten treten die Empfangswerte auf?
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(r = +1)$ = { 0.6 3% }
+
${\rm Pr}(r = +1) \ = \ $ { 0.6 3% }
${\rm Pr}(r = \, &ndash;1)$ = { 0.15 3% }
+
${\rm Pr}(r = -1) \ = \ $ { 0.15 3% }
${\rm Pr}(r = 0)$ = { 0.25 3% }
+
${\rm Pr}(r = 0) \hspace{0.4cm} = \ $ { 0.25 3% }
  
 
{Berechnen Sie alle Rückschlusswahrscheinlichkeiten.
 
{Berechnen Sie alle Rückschlusswahrscheinlichkeiten.
 
|type="{}"}
 
|type="{}"}
${\rm Pr}(s_0|r = +1)$ = { 1 3% }
+
${\rm Pr}(s_0|r = +1) \ = \ $ { 1 3% }
${\rm Pr}(s_1|r = +1)$ = { 0 3% }
+
${\rm Pr}(s_1|r = +1) \ = \ $ { 0 3% }
${\rm Pr}(s_0|r = \, &ndash;1)$ = { 0 3% }
+
${\rm Pr}(s_0|r = -1) \ = \ $ { 0 3% }
${\rm Pr}(s_1|r = \, &ndash;1)$ = { 1 3% }
+
${\rm Pr}(s_1|r = -1) \ = \ ${ 1 3% }
${\rm Pr}(s_0|r = 0)$ = { 0.6 3% }
+
${\rm Pr}(s_0|r = 0) \ = \ $ { 0.6 3% }
${\rm Pr}(s_1|r = 0)$ = { 0.4 3% }
+
${\rm Pr}(s_1|r = 0) \ = \ $ { 0.4 3% }
  
 
{Unterscheiden sich MAP&ndash; und ML&ndash;Empfänger für $r = +1$?
 
{Unterscheiden sich MAP&ndash; und ML&ndash;Empfänger für $r = +1$?

Version vom 14. November 2017, 11:02 Uhr

Kanalübergangswahrscheinlichkeiten

Zur Verdeutlichung von MAP– und ML–Entscheidung konstruieren wir nun ein sehr einfaches Beispiel mit nur zwei möglichen Nachrichten $m_0 = 0$ und $m_1 = 1$, die durch die Signalwerte $s_0$ bzw. $s_1$ dargestellt werden:

$$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_0 = +1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_0 = 0\hspace{0.05cm},$$
$$s \hspace{-0.15cm} \ = \ \hspace{-0.15cm}s_1 = -1 \hspace{0.2cm} \Longleftrightarrow \hspace{0.2cm}m = m_1 = 1\hspace{0.05cm}.$$
  • Die Auftrittswahrscheinlichkeiten seien:
$${\rm Pr}(s = s_0) = 0.75,\hspace{0.2cm}{\rm Pr}(s = s_1) = 0.25 \hspace{0.05cm}.$$
  • Das Empfangssignal kann – warum auch immer – drei verschiedene Werte annehmen, nämlich
$$r = +1,\hspace{0.2cm}r = 0,\hspace{0.2cm}r = -1 \hspace{0.05cm}.$$
  • Die bedingten Kanalwahrscheinlichkeiten können der Grafik entnommen werden.

Nach der Übertragung soll die gesendete Nachricht durch einen optimalen Empfänger geschätzt werden. Zur Verfügung stehen:

  • der Maximum–Likelihood–Empfänger (ML–Empfänger), der die Auftrittswahrscheinlichkeiten ${\rm Pr}(s = s_i)$ nicht kennt, mit der Entscheidungsregel:
$$\hat{m}_{\rm ML} = {\rm arg} \max_i \hspace{0.1cm} [ p_{r |s } \hspace{0.05cm} (\rho |s_i ) ]\hspace{0.05cm},$$
  • der Maximum–a–posteriori–Empfänger (MAP–Empfänger); dieser berücksichtigt bei seinem Entscheidungsprozess auch die Symbolwahrscheinlichkeiten der Quelle:
$$\hat{m}_{\rm MAP} = {\rm arg} \max_i \hspace{0.1cm} [ {\rm Pr}( s = s_i) \cdot p_{r |s } \hspace{0.05cm} (\rho |s_i ) ]\hspace{0.05cm}.$$


Hinweise:



Fragebogen

1

Mit welchen Wahrscheinlichkeiten treten die Empfangswerte auf?

${\rm Pr}(r = +1) \ = \ $

${\rm Pr}(r = -1) \ = \ $

${\rm Pr}(r = 0) \hspace{0.4cm} = \ $

2

Berechnen Sie alle Rückschlusswahrscheinlichkeiten.

${\rm Pr}(s_0|r = +1) \ = \ $

${\rm Pr}(s_1|r = +1) \ = \ $

${\rm Pr}(s_0|r = -1) \ = \ $

${\rm Pr}(s_1|r = -1) \ = \ $

${\rm Pr}(s_0|r = 0) \ = \ $

${\rm Pr}(s_1|r = 0) \ = \ $

3

Unterscheiden sich MAP– und ML–Empfänger für $r = +1$?

ja,
nein.

4

Unterscheiden sich MAP– und ML–Empfänger für $r = \, –1$?

ja,
nein.

5

Welche Aussagen gelten unter der Voraussetzung „$r = 0$”?

Der MAP–Empfänger entscheidet sich für $s_0$.
Der MAP–Empfänger entscheidet sich für $s_1$.
Der ML–Empfänger entscheidet sich für $s_0$.
Der ML–Empfänger entscheidet sich für $s_1$.

6

Berechnen Sie die Fehlerwahrscheinlichkeit des ML–Empfängers.

${\rm ML\text{:} \hspace{0.15cm} Pr(Symbolfehler)}$ =

7

Berechnen Sie die Fehlerwahrscheinlichkeit des MAP–Empfängers.

${\rm MAP\text{:} \hspace{0.15cm} Pr(Symbolfehler)}$ =


Musterlösung

(1)  Die gesuchten empfängerseitigen Auftrittswahrscheinlichkeiten sind

$${\rm Pr} ( r = +1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr} ( s_0) \cdot {\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s = +1) = 0.75 \cdot 0.8 \hspace{0.05cm}\hspace{0.15cm}\underline { = 0.6}\hspace{0.05cm},$$
$${\rm Pr} ( r = -1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {\rm Pr} ( s_1) \cdot {\rm Pr} ( r = -1 \hspace{0.05cm}| \hspace{0.05cm}s = -1) = 0.25 \cdot 0.6 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.15}\hspace{0.05cm},$$
$${\rm Pr} ( r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 - {\rm Pr} ( r = +1) - {\rm Pr} ( r = -1) = 1 - 0.6 - 0.15 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.25}\hspace{0.05cm}.$$

Für die letzte Wahrscheinlichkeit gilt auch:

$${\rm Pr} ( r = 0) = 0.75 \cdot 0.2 + 0.25 \cdot 0.4 = 0.25\hspace{0.05cm}.$$


(2)  Für die erste gesuchte Rückschlusswahrscheinlichkeit gilt:

$${\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) = \frac{{\rm Pr} ( r = +1 \hspace{0.05cm}|\hspace{0.05cm}s_0 ) \cdot {\rm Pr} ( s_0)}{{\rm Pr} ( r = +1)} = \frac{0.8 \cdot 0.75}{0.6} \hspace{0.05cm}\hspace{0.15cm}\underline {= 1}\hspace{0.05cm}.$$

Entsprechend erhält man für die weiteren Wahrscheinlichkeiten:

$${\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = +1) \hspace{-0.1cm} \ = \ 1 - {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0}\hspace{0.05cm},$$
$${\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = -1) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0, \hspace{0.4cm}{\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = -1) \hspace{0.05cm}\hspace{0.15cm}\underline {= 1}\hspace{0.05cm},$$
$${\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm}\frac{{\rm Pr} ( r = 0 \hspace{0.05cm}|\hspace{0.05cm}s_0 ) \cdot {\rm Pr} ( s_0)}{{\rm Pr} ( r = 0 )}= \frac{0.2 \cdot 0.75}{0.25} \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.6}\hspace{0.05cm},$$
$${\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1- {\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.4} \hspace{0.05cm}.$$


(3)  Es gelte $r = +1$. Dann entscheidet sich

  • der MAP–Empfänger für $s_0$, da
$${\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = +1) = 1 > {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = +1)= 0\hspace{0.05cm},$$
  • der ML–Empfänger ebenfalls für $s_0$, da
$${\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s_0) = 0.8 > {\rm Pr} ( r = +1 \hspace{0.05cm}| \hspace{0.05cm}s_1) = 0 \hspace{0.05cm}.$$

Richtig ist also NEIN.


(4)  Zum gleichen Ergebnis NEIN kommt man unter der Voraussetzung „$r = \, –1$”, da keine Verbindung zwischen $s_0$ und „$r = \, –1$” besteht.


(5)  Der MAP–Empfänger entscheidet sich für das Ereignis $s_0$, da

$${\rm Pr} (s_0 \hspace{0.05cm}| \hspace{0.05cm}r = 0) = 0.6 > {\rm Pr} (s_1 \hspace{0.05cm}| \hspace{0.05cm}r = 0) = 0.4 \hspace{0.05cm}.$$

Dagegen wird sich der ML–Empfänger für $s_1$ entscheiden, da

$${\rm Pr} ( r = 0 \hspace{0.05cm}| \hspace{0.05cm}s_1) = 0.4 > {\rm Pr} ( r = 0 \hspace{0.05cm}| \hspace{0.05cm}s_0) = 0.2 \hspace{0.05cm}.$$

Richtig sind also die Lösungsvorschläge 1 und 4.


(6)  Der Maximum–Likelihood–Empfänger

  • entscheidet sich nur für $s_0$, wenn $r = +1$ ist,
  • macht also keinen Fehler, wenn $s_1$ gesendet wurde,
  • macht nur einen Fehler bei der Kombination „$s_0$” und „$r = 0$”:
$${\rm Pr} ({\rm Symbolfehler} ) = {\rm Pr} ({\cal E } ) = 0.75 \cdot 0.2 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.15} \hspace{0.05cm}.$$


(7)  Der MAP–Empfänger entscheidet sich dagegen bei „$r = 0$” für $s_0$. Einen Symbolfehler gibt es also nur in der Kombination „$s_1$” und „$r = 0$”. Daraus folgt:

$${\rm Pr} ({\rm Symbolfehler} ) = {\rm Pr} ({\cal E } ) = 0.25 \cdot 0.4 \hspace{0.05cm}\hspace{0.15cm}\underline {= 0.1} \hspace{0.05cm}.$$

Die Fehlerwahrscheinlichkeit ist hier geringer als beim ML–Empfänger, da nun auch die unterschiedlichen Apriori–Wahrscheinlichkeiten ${\rm Pr}(s_0)$ und ${\rm Pr}(s_1)$ berücksichtigt werden.