Kanalcodierung/Codebeschreibung mit Zustands– und Trellisdiagramm: Unterschied zwischen den Versionen
Zeile 10: | Zeile 10: | ||
Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich dabei aus der Zahl der Speicherelemente ⇒ Gedächtnis $m$ zu $2^m$.<br> | Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich dabei aus der Zahl der Speicherelemente ⇒ Gedächtnis $m$ zu $2^m$.<br> | ||
− | [[Datei:P ID2630 KC T 3 3 S1 v2.png|Faltungscodierer mit | + | [[Datei:P ID2630 KC T 3 3 S1 v2.png|center|frame|Faltungscodierer mit $k = 1, \ n = 2$ und $m = 2$|class=fit]]<br> |
Im Kapitel 3.3 gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird: | Im Kapitel 3.3 gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird: | ||
Zeile 43: | Zeile 43: | ||
*der jeweiligen Codesequenzen $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$.<br><br> | *der jeweiligen Codesequenzen $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$.<br><br> | ||
− | [[Datei:P ID2631 KC T 3 3 S1b v1.png|Zur Verdeutlichung der Registerzustände | + | [[Datei:P ID2631 KC T 3 3 S1b v1.png|center|frame|Zur Verdeutlichung der Registerzustände $S_{\mu}$|class=fit]]<br> |
Die Farbkennzeichnungen sollen den Übergang zu den nachfolgenden Grafiken auf den nächsten Seiten erleichtern. Man erkennt aus obiger Darstellung beispielsweise: | Die Farbkennzeichnungen sollen den Übergang zu den nachfolgenden Grafiken auf den nächsten Seiten erleichtern. Man erkennt aus obiger Darstellung beispielsweise: | ||
Zeile 65: | Zeile 65: | ||
Die Grafik zeigt das <b>Zustandsübergangsdiagramm</b> (englisch: <i>State Transition Diagram</i>) für unseren Standardcodierer. Dieses liefert alle Informationen über den $(n = 2, \ k = 1, \ m = 2)$–Faltungscodierer in kompakter Form. Die Farbgebung ist mit der [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister_.281.29| sequenziellen Darstellung]] auf der vorherigen Seite abgestimmt. Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.<br> | Die Grafik zeigt das <b>Zustandsübergangsdiagramm</b> (englisch: <i>State Transition Diagram</i>) für unseren Standardcodierer. Dieses liefert alle Informationen über den $(n = 2, \ k = 1, \ m = 2)$–Faltungscodierer in kompakter Form. Die Farbgebung ist mit der [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Zustandsdefinition_f.C3.BCr_ein_Speicherregister_.281.29| sequenziellen Darstellung]] auf der vorherigen Seite abgestimmt. Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.<br> | ||
− | [[Datei:P ID3022 KC T 3 3 S2 v2.png|Zustandsübertragungsdiagramm 1 für | + | [[Datei:P ID3022 KC T 3 3 S2 v2.png|center|frame|Zustandsübertragungsdiagramm 1 für $n = 2, \ k = 1, \ m = 2$|class=fit]]<br> |
Die $2^{m+k}$ Übergänge sind mit „$u_i \ | \ \underline{x}_i$” beschriftet. Beispielsweise ist abzulesen: | Die $2^{m+k}$ Übergänge sind mit „$u_i \ | \ \underline{x}_i$” beschriftet. Beispielsweise ist abzulesen: | ||
Zeile 83: | Zeile 83: | ||
Die obere Grafik zeigt nochmals das Zustandsübergangsdiagramm für unseren Standardcodierer. Dieses dient lediglich als Vergleichsgrundlage für das nachfolgende Beispiel.<br> | Die obere Grafik zeigt nochmals das Zustandsübergangsdiagramm für unseren Standardcodierer. Dieses dient lediglich als Vergleichsgrundlage für das nachfolgende Beispiel.<br> | ||
− | [[Datei:P ID2679 KC T 3 3 S2a v1.png|Zustandsübertragungsdiagramm 1 für | + | [[Datei:P ID2679 KC T 3 3 S2a v1.png|center|frame|Zustandsübertragungsdiagramm 1 für $n = 2, \ k = 1, \ m = 2$|class=fit]]<br> |
Die untere Grafik gilt für einen systematischen Code, ebenfalls mit den Kenngrößen $n = 2, \ k = 1, \ m = 2$. Es handelt sich um die äquivalente systematische Repräsentation des obigen Codierers. Man bezeichnet diesen auch als RSC–Codierer (englisch: <i>Recursive Systematic Convolutional Encoder</i>).<br> | Die untere Grafik gilt für einen systematischen Code, ebenfalls mit den Kenngrößen $n = 2, \ k = 1, \ m = 2$. Es handelt sich um die äquivalente systematische Repräsentation des obigen Codierers. Man bezeichnet diesen auch als RSC–Codierer (englisch: <i>Recursive Systematic Convolutional Encoder</i>).<br> | ||
− | [[Datei:P ID2680 KC T 3 3 S2b v3.png|Zustandsübertragungsdiagramm 2 für | + | [[Datei:P ID2680 KC T 3 3 S2b v3.png|center|frame|Zustandsübertragungsdiagramm 2 für $n = 2, \ k = 1, \ m = 2$|class=fit]]<br> |
Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede: | Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede: | ||
Zeile 103: | Zeile 103: | ||
Man kommt vom Zustandsübergangsdiagramm zum so genannten <i>Trellisdiagramm</i> (oder kurz: Trellis), indem man zusätzlich eine Zeitkomponente ⇒ Laufvariable $i$ berücksichtigt. Die folgende Grafik stellt die beiden Diagramme für unseren Standardcodierer $(n = 2, \ k = 1, \ m = 2)$ gegenüber.<br> | Man kommt vom Zustandsübergangsdiagramm zum so genannten <i>Trellisdiagramm</i> (oder kurz: Trellis), indem man zusätzlich eine Zeitkomponente ⇒ Laufvariable $i$ berücksichtigt. Die folgende Grafik stellt die beiden Diagramme für unseren Standardcodierer $(n = 2, \ k = 1, \ m = 2)$ gegenüber.<br> | ||
− | [[Datei:P ID2635 KC T 3 3 S3 v2.png|Zustandsübergangsdiagramm vs. Trellisdiagramm ( | + | [[Datei:P ID2635 KC T 3 3 S3 v2.png|center|frame|Zustandsübergangsdiagramm vs. Trellisdiagramm $(n = 2, \ k = 1, \ m = 2)$|class=fit]]<br> |
Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier – etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist „Trellis”. Weiter ist anhand dieser Grafik zu erkennen: | Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier – etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist „Trellis”. Weiter ist anhand dieser Grafik zu erkennen: | ||
Zeile 120: | Zeile 120: | ||
{{Beispiel}}''':''' Auf der ersten Seite dieses Abschnitts wurde für unseren Rate–$1/2$–Standardcodierer mit Gedächtnis $m = 2$ sowie die Informationssequenz $\underline{u} = (1, 1, 1, 0, 0, 0, 1, 0, 1, \ ...)$ die Codesequenz $\underline{x}$ hergeleitet, die in nachfolgender Tabelle für $i ≤ 9$ nochmals angegeben ist.<br> | {{Beispiel}}''':''' Auf der ersten Seite dieses Abschnitts wurde für unseren Rate–$1/2$–Standardcodierer mit Gedächtnis $m = 2$ sowie die Informationssequenz $\underline{u} = (1, 1, 1, 0, 0, 0, 1, 0, 1, \ ...)$ die Codesequenz $\underline{x}$ hergeleitet, die in nachfolgender Tabelle für $i ≤ 9$ nochmals angegeben ist.<br> | ||
− | [[Datei:P ID2636 KC T 3 3 S3b v1.png|Trellisdiagramm einer Beispielssequenz|class=fit]]<br> | + | [[Datei:P ID2636 KC T 3 3 S3b v1.png|center|frame|Trellisdiagramm einer Beispielssequenz|class=fit]]<br> |
Darunter gezeichnet ist das Trellisdiagramm. Man erkennt: | Darunter gezeichnet ist das Trellisdiagramm. Man erkennt: | ||
Zeile 150: | Zeile 150: | ||
:<math>\underline{x}' \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm}.</math> | :<math>\underline{x}' \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm}.</math> | ||
− | [[Datei:P ID2638 KC T 3 3 S4b v2.png|Zur Definition der freien Distanz|class=fit]]<br> | + | [[Datei:P ID2638 KC T 3 3 S4b v2.png|center|frame|Zur Definition der freien Distanz|class=fit]]<br> |
Man erkennt aus diesen Darstellungen: | Man erkennt aus diesen Darstellungen: | ||
Zeile 163: | Zeile 163: | ||
Die freie Distanz $d_{\rm F}$ nimmt mit wachsendem Gedächtnis $m$ zu, vorausgesetzt, man verwendet für die Übertragungsfunktionsmatrix $\mathbf{G}(D)$ geeignete Polynome. In der Tabelle sind für Rate–$1/2$–Faltungscodes die $n = 2$ Polynome zusammen mit dem $d_{\rm F}$–Wert angegeben. Von Bedeutung ist insbesondere der sog. <i>Industriestandardcode</i> mit $m = 6$ ⇒ $64$ Zustände und der freien Distanz $d_{\rm F} = 10$.<br> | Die freie Distanz $d_{\rm F}$ nimmt mit wachsendem Gedächtnis $m$ zu, vorausgesetzt, man verwendet für die Übertragungsfunktionsmatrix $\mathbf{G}(D)$ geeignete Polynome. In der Tabelle sind für Rate–$1/2$–Faltungscodes die $n = 2$ Polynome zusammen mit dem $d_{\rm F}$–Wert angegeben. Von Bedeutung ist insbesondere der sog. <i>Industriestandardcode</i> mit $m = 6$ ⇒ $64$ Zustände und der freien Distanz $d_{\rm F} = 10$.<br> | ||
− | [[Datei:P ID2639 KC T 3 3 S4c.png|Optimale Faltungscodes der Rate 1/2|class=fit]]<br> | + | [[Datei:P ID2639 KC T 3 3 S4c.png|center|frame|Optimale Faltungscodes der Rate $1/2$|class=fit]]<br> |
Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.<br> | Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.<br> | ||
Zeile 169: | Zeile 169: | ||
{{Beispiel}}''':''' Unser $(n = 2, \ k = 1, \ m = 2)$–Standard–Coder basiert auf der Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$. Dieser weist die freie Distanz $d_{\rm F} = 5$ auf.<br> | {{Beispiel}}''':''' Unser $(n = 2, \ k = 1, \ m = 2)$–Standard–Coder basiert auf der Übertragungsfunktionsmatrix $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$. Dieser weist die freie Distanz $d_{\rm F} = 5$ auf.<br> | ||
− | [[Datei:P ID2640 KC T 3 3 S4d v3.png|Zustandsübergangsdiagramm 3 für | + | [[Datei:P ID2640 KC T 3 3 S4d v3.png|center|frame|Zustandsübergangsdiagramm 3 für $n = 2, \ k = 1, \ m = 2$|class=fit]]<br> |
Verwendet man $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$, so ändert sich das Zustandsübergangsdiagramm gegenüber dem Standard–Coder ⇒ [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm_.281.29| Seite 2a]] nur wenig. Die Auswirkungen sind aber gravierend: | Verwendet man $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$, so ändert sich das Zustandsübergangsdiagramm gegenüber dem Standard–Coder ⇒ [[Kanalcodierung/Codebeschreibung_mit_Zustands%E2%80%93_und_Trellisdiagramm#Darstellung_im_Zustands.C3.BCbergangsdiagramm_.281.29| Seite 2a]] nur wenig. Die Auswirkungen sind aber gravierend: | ||
Zeile 182: | Zeile 182: | ||
Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen $\underline{u}$ und Codesequenzen $\underline{x}$ aus, die per Definition unendlich lang sind. In praktischen Anwendungen, siehe zum Beispiel GSM und UMTS verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$. Bei einem Rate–$1/n$–Faltungscode hat dann die Codesequenz mindestens die Länge $n \cdot L$.<br> | Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen $\underline{u}$ und Codesequenzen $\underline{x}$ aus, die per Definition unendlich lang sind. In praktischen Anwendungen, siehe zum Beispiel GSM und UMTS verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$. Bei einem Rate–$1/n$–Faltungscode hat dann die Codesequenz mindestens die Länge $n \cdot L$.<br> | ||
− | [[Datei:P ID2641 KC T 3 3 S5 v2.png| Terminierter Faltungscode der Rate | + | [[Datei:P ID2641 KC T 3 3 S5 v2.png|center|frame|Terminierter Faltungscode der Rate $R = 128/260$|class=fit]]<br> |
Die Grafik zeigt ohne Hinterlegung das Trellis unseres Standard–Rate–$1/2$–Faltungscodes bei binärer Eingangsfolge $\underline{u}$ der endlichen Länge $L = 128$. Damit hat die Codefolge $\underline{x}$ die Länge $2 \cdot L = 256$. Aufgrund des undefinierten Endzustands ist eine vollständige Maximum–Likelihood–Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände $S_0, \ ... \ , \ S_3$ sich für $i > L$ einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall $L → ∞$.<br> | Die Grafik zeigt ohne Hinterlegung das Trellis unseres Standard–Rate–$1/2$–Faltungscodes bei binärer Eingangsfolge $\underline{u}$ der endlichen Länge $L = 128$. Damit hat die Codefolge $\underline{x}$ die Länge $2 \cdot L = 256$. Aufgrund des undefinierten Endzustands ist eine vollständige Maximum–Likelihood–Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände $S_0, \ ... \ , \ S_3$ sich für $i > L$ einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall $L → ∞$.<br> |
Version vom 25. November 2017, 21:01 Uhr
Inhaltsverzeichnis
- 1 Zustandsdefinition für ein Speicherregister (1)
- 2 Zustandsdefinition für ein Speicherregister (2)
- 3 Darstellung im Zustandsübergangsdiagramm (1)
- 4 Darstellung im Zustandsübergangsdiagramm (2)
- 5 Darstellung im Trellisdiagramm (1)
- 6 Darstellung im Trellisdiagramm (2)
- 7 Definition der freien Distanz (1)
- 8 Definition der freien Distanz (2)
- 9 Terminierte Faltungscodes
- 10 Punktierte Faltungscodes
- 11 Aufgaben
Zustandsdefinition für ein Speicherregister (1)
Ein Faltungscodierer kann auch als Automat mit endlicher Anzahl von Zuständen aufgefasst werden. Die Zustandsanzahl ergibt sich dabei aus der Zahl der Speicherelemente ⇒ Gedächtnis $m$ zu $2^m$.
Im Kapitel 3.3 gehen wir meist vom gezeichneten Faltungscodierer aus, der durch folgende Kenngrößen charakterisiert wird:
- $k = 1, \ n = 2$ ⇒ Coderate $R = 1/2$,
- Gedächtnis $m = 2$ ⇒ Einflusslänge $\nu = 3$,
- Übertragungsfunktionsmatrix in Oktalform $(7, 5)$ ⇒ $\mathbf{G}(D) = (1 + D + D^2, \ 1 + D^2)$.
Die Codesequenz zum Zeitpunkt $i$ ⇒ $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$ hängt außer vom Informationsbit $u_i$ auch vom Inhalt $(u_{i–1}), \ u_{i–2})$ des Speichers ab. Hierfür gibt es $2^m = 4$ Möglichkeiten, die man als die Zustände $S_0, S_1, S_2$ und $S_3$ bezeichnet. Der Registerzustand $S_{\mu}$ sei dabei über den Index definiert:
\[\mu = u_{i-1} + 2 \cdot u_{i-2}\hspace{0.05cm}, \hspace{0.5cm}{\rm allgemein\hspace{-0.1cm}:}\hspace{0.15cm} \mu = \sum_{l = 1}^{m} \hspace{0.1cm}2\hspace{0.03cm}^{l-1} \cdot u_{i-l} \hspace{0.05cm}.\]
Im Englischen verwendet man für „Zustand” den Begriff State. Entsprechend ist auch im deutschen Text manchmal vom Registerstatus die Rede.
Um Verwechslungen zu vermeiden, unterscheiden wir im Weiteren durch Groß– bzw. Kleinbuchstaben:
- die möglichen Zustände $S_{\mu}$ mit den Indizes $0 ≤ \mu ≤ 2^m \,–1$,
- die aktuellen Zustände $s_i$ zu den Zeitpunkten $i = 1, \ 2, \ 3, \ ...$
Auf der nächsten Seite verdeutlichen wir die Zustände an einem Beispiel.
Zustandsdefinition für ein Speicherregister (2)
- der Informationssequenz $\underline{u}$ ⇒ Informationsbits $u_i$,
- der aktuellen Zustände $s_i ∈ \{S_0, \ S_1, \ S_2, \ S_3\}$ zu den Zeitpunkten $i$, sowie
- der jeweiligen Codesequenzen $\underline{x}_i = (x_i^{(1)}, \ x_i^{(2)})$.
Die Farbkennzeichnungen sollen den Übergang zu den nachfolgenden Grafiken auf den nächsten Seiten erleichtern. Man erkennt aus obiger Darstellung beispielsweise:
- Zum Zeitpunkt $i = 5$ gilt $u_{i–1} = u_4 = 0$, $u_{i–2} = u_3 = 1$. Das heißt, der Automat befindet sich im Zustand $s_5 = S_2$. Mit dem Informationsbit $u_i = u_5 = 0$ erhält man die Codesequenz $\underline{x}_5 = (11)$.
- Der Zustand für den Zeitpunkt $i = 6$ ergibt sich aus $u_{i–1} = u_5 = 0$ und $u_{i–2} = u_4 = 0$ zu $s_6 = S_0$. Wegen $u_6 = 0$ wird nun $\underline{x}_6 = (00)$ ausgegeben und der neue Zustand $s_7$ ist wiederum $S_0$.
- Auch zum Zeitpunkt $i = 12$ wird wegen $u_{12} = 0$ die Codesequenz $\underline{x}_{12} = (11)$ ausgegeben und man geht vom Zustand $s_{12} = S_2$ in den Zustand $s_{13} = S_0$ über.
- Dagegen wird zum Zeitpunkt $i = 9$ die Codesequenz $(00)$ ausgegeben und auf $s_9 = S_2$ folgt $s_{10} = S_1$. Gleiches gilt auch für $i = 15$. In beiden Fällen lautet das aktuelle Informationsbit $u_i = 1$.
Aus diesem Beispiel ist zu erkennen, dass die Codesequenz $\underline{x}_i$ zum Zeitpunkt $i$ allein
- vom aktuellen Zustand $s_i = S_{\mu} (0 ≤ \mu ≤ 2^m \, –1)$, sowie
- vom aktuellen Informationsbit $u_i$
abhängt. Ebenso wird der Nachfolgezustand $s_{i+1}$ allein durch $s_i$ und $u_i$ bestimmt. Diese Eigenschaften werden im so genannten Zustandsübergangsdiagramm auf der nächsten Seite berücksichtigt.
Darstellung im Zustandsübergangsdiagramm (1)
Die Grafik zeigt das Zustandsübergangsdiagramm (englisch: State Transition Diagram) für unseren Standardcodierer. Dieses liefert alle Informationen über den $(n = 2, \ k = 1, \ m = 2)$–Faltungscodierer in kompakter Form. Die Farbgebung ist mit der sequenziellen Darstellung auf der vorherigen Seite abgestimmt. Der Vollständigkeit halber ist auch die Herleitungstabelle nochmals angegeben.
Die $2^{m+k}$ Übergänge sind mit „$u_i \ | \ \underline{x}_i$” beschriftet. Beispielsweise ist abzulesen:
- Durch das Informationsbit $u_i = 0$ (gekennzeichnet durch eine rote Beschriftung) gelangt man vom Zustand $s_i = S_1$ zum Zustand $s_{i+1} = S_2$ und die beiden Codebits lauten $x_i^{(1)} = 1, x_i^{(2)} = 0$.
- Mit dem Informationsbit $u_i = 1$ (blaue Beschriftung) im Zustand $s_i = S_1$ ergeben sich dagegen die Codebits zu $x_i^{(1)} = 0, \ x_i^{(2)} = 1$, und man kommt zum neuen Zustand $s_{i+1} = S_3$.
Die Struktur des Zustandsübergangsdiagramms ist allein durch die Parameter m und k festgelegt:
- Die Anzahl der Zustände ist $2^{m \cdot k}$.
- Von jedem Zustand gehen $2^k$ Pfeile ab.
Ein weiteres Beispiel folgt auf der nächsten Seite.
Darstellung im Zustandsübergangsdiagramm (2)
Die obere Grafik zeigt nochmals das Zustandsübergangsdiagramm für unseren Standardcodierer. Dieses dient lediglich als Vergleichsgrundlage für das nachfolgende Beispiel.
Die untere Grafik gilt für einen systematischen Code, ebenfalls mit den Kenngrößen $n = 2, \ k = 1, \ m = 2$. Es handelt sich um die äquivalente systematische Repräsentation des obigen Codierers. Man bezeichnet diesen auch als RSC–Codierer (englisch: Recursive Systematic Convolutional Encoder).
Gegenüber dem oberen Zustandsübergangsdiagramm erkennt man folgende Unterschiede:
- Da die früheren Informationsbits $u_{i–1}$ und $u_{i–2}$ nicht abgespeichert werden, beziehen sich hier die Zustände $s_i = S_{\mu}$ auf die verarbeiteten Größen $w_{i–1}$ und $w_{i–2}$, wobei $w_i = u_i + w_{i–1} + w_{i–2}$ gilt.
- Da dieser Code systematisch ist, gilt $x_i^{(1)} = u_i$. Die Herleitung der zweiten Codebits $x_i^{(2)}$ finden Sie in Aufgabe A3.5. Es handelt sich um ein rekursives Filter, wie in Kapitel 3.2 beschrieben.
Der Bildervergleich zeigt, dass sich für beide Codierer ein ähnliches Zustandsübergangsdiagramm ergibt:
- Man gelangt von jedem Zustand $s_i ∈ \{S_0, \ S_1, \ S_2, \ S_3\}$ zu den gleichen Nachfolgezuständen $s_{i+1}$.
- Ein Unterschied besteht hinsichtlich der ausgegebenen Codesequenzen $\underline{x}_i ∈ \{00, 01, 10, 11\}$.
Darstellung im Trellisdiagramm (1)
Man kommt vom Zustandsübergangsdiagramm zum so genannten Trellisdiagramm (oder kurz: Trellis), indem man zusätzlich eine Zeitkomponente ⇒ Laufvariable $i$ berücksichtigt. Die folgende Grafik stellt die beiden Diagramme für unseren Standardcodierer $(n = 2, \ k = 1, \ m = 2)$ gegenüber.
Die untere Darstellung hat Ähnlichkeit mit einem Gartenspalier – etwas Phantasie vorausgesetzt. Die englische Übersetzung hierfür ist „Trellis”. Weiter ist anhand dieser Grafik zu erkennen:
- Da alle Speicherregister mit Nullen vorbelegt sind, startet das Trellis stets vom Zustand $s_1 = S_0$. Zum nächsten Zeitpunkt $(i = 2)$ sind dann nur die beiden Zustände $S_0$ und $S_1$ möglich.
- Ab dem Zeitpunkt $i = m + 1 = 3$ hat das Trellis für jeden Übergang von $s_i$ nach $s_{i+1}$ genau das gleiche Aussehen. Jeder Zustand $S_{\mu}$ ist durch einen roten Pfeil $(u_i = 0)$ und einen blauen Pfeil $(u_i = 1)$ mit einem Nachfolgezustand verbunden.
- Gegenüber einem Codebaum, der mit jedem Zeitschritt i exponentiell anwächst – siehe zum Beispiel Kapitel 3.8, Seite 2a im Buch „Digitalsignalübertragung” – ist hier die Zahl der Knoten (also der möglichen Zustände) auf $2^m$ begrenzt.
- Diese erfreuliche Eigenschaft eines jeden Trellisdiagramms nutzt auch der Viterbi–Algorithmus zur effizienten Maximum–Likelihood–Decodierung von Faltungscodes.
Darstellung im Trellisdiagramm (2)
Das folgende Beispiel soll zeigen, dass zwischen der Aneinanderreihung der Codesequenzen $\underline{x}_i$ und den Pfaden durch das Trellisdiagramm eine 1:1–Zuordnung besteht. Auch die Informationssequenz $\underline{u}$ ist aus dem ausgewählten Trellispfad anhand der Farben der einzelnen Zweige ablesbar. Ein roter Zweig steht für das Informationsbit $u_i = 0$, ein blauer für $u_i = 1$.
Darunter gezeichnet ist das Trellisdiagramm. Man erkennt:
- Der ausgewählte Pfad durch das Trellis ergibt sich durch die Aneinanderreihung roter und blauer Pfeile, die für die möglichen Informationsbits $u_i = 0$ bzw. $u_i = 1$ stehen. Diese Aussage gilt für jeden Rate–$1/n$–Faltungscode. Bei einem Code mit $k > 1$ gäbe es $2^k$ verschiedenfarbige Pfeile.
- Bei einem Rate–$1/n$–Faltungscode sind die Pfeile mit den Codeworten $\underline{x}_i = (x_i^{(1)}, \ ... \ , \ x_i^{(n)})$ beschriftet, die sich aus dem Informationsbit $u_i$ und den aktuellen Registerzuständen $s_i$ ergeben. Für $n = 2$ gibt es nur vier mögliche Codeworte, nämlich $00, 01, 10$ und $11$.
- In vertikaler Richtung erkennt man aus dem Trellis die möglichen Registerzustände $S_{\mu}$. Bei einem Rate–$k/n$–Faltungscode mit der Gedächtnisordnung $m$ gibt es $2^{k \cdot m}$ verschiedene Zustände. Im vorliegenden Beispiel $(k = 1, \ m = 2)$ sind dies nur die Zustände $S_0, \ S_1, \ S_2$ und $S_3$.
Definition der freien Distanz (1)
Als eine wichtige Kenngröße der linearen Blockcodes wurde in Kapitel 1.1 die minimale Hamming–Distanz zwischen zwei beliebigen Codeworten $\underline{x}$ und $\underline{x}'$ eingeführt:
\[d_{\rm min}(\mathcal{C}) = \min_{\substack{\underline{x},\hspace{0.05cm}\underline{x}' \hspace{0.05cm}\in \hspace{0.05cm} \mathcal{C} \\ {\underline{x}} \hspace{0.05cm}\ne \hspace{0.05cm} \underline{x}'}}\hspace{0.1cm}d_{\rm H}(\underline{x}, \hspace{0.05cm}\underline{x}')\hspace{0.05cm}.\]
Aufgrund der Linearität gehört zu jedem Blockcode auch das Nullwort $\underline{0}$. Damit ist $d_{\rm min}$ auch gleich dem minimalen Hamming–Gewicht $w_{\rm H}(\underline{x})$ eines Codewortes $\underline{x} ≠ \underline{0}$.
Bei Faltungscodes erweist sich die Beschreibung der Distanzverhältnisse als wesentlich aufwändiger, da ein Faltungscode aus unendlich langen und unendlich vielen Codesequenzen besteht.
Da Faltungscodes ebenfalls linear sind, kann man auch hier als Bezugssequenz die unendlich lange Nullsequenz heranziehen: $\underline{x} = \underline{0}$. Damit ist die freie Distanz $d_{\rm F}$ gleich dem minimalen Hamming–Gewicht (Anzahl der Einsen) einer Codesequenz $\underline{x} ≠ \underline{0}$.
\[\underline{0} \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_0 \rightarrow S_0\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 00, 00, 00, 00, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm},\] \[\underline{x} \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_2\rightarrow S_0\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 10, 11, 00, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm},\] \[\underline{x}' \hspace{-0.15cm} = \hspace{-0.15cm} \left ( S_0 \rightarrow S_1 \rightarrow S_3\rightarrow S_2\rightarrow S_0\rightarrow \hspace{0.05cm}... \hspace{0.05cm}\right)= \left ( 11, 01, 01, 11, 00,\hspace{0.05cm} ... \hspace{0.05cm}\right) \hspace{0.05cm}.\]
Man erkennt aus diesen Darstellungen:
- Die freie Distanz $d_{\rm F} = 5$ ist gleich dem Hamming–Gewicht $w_{\rm H}(\underline{x})$. Keine andere Sequenz als die gelb hinterlegte unterscheidet sich von $\underline{0}$ um weniger als $5 \ \rm Bit$. Beispielsweise ist $w_{\rm H}(\underline{x}') = 6$.
- In diesem Beispiel ergibt sich die freie Distanz $d_{\rm F} = 5$ auch als die Hamming–Distanz zwischen den Sequenzen $\underline{x}$ und $\underline{x}'$, die sich genau in fünf Bitpositionen unterscheiden.
Definition der freien Distanz (2)
Je größer die freie Distanz $d_{\rm F}$ ist, desto besser ist das asymptotische Verhalten des Faltungscoders. Zur genauen Berechnung von Fehlerwahrscheinlichkeit benötigt man allerdings – ebenso wie bei den linearen Blockcodes – die Gewichtsfunktion (englisch: Weight Enumerator Function) ⇒ siehe Kapitel 3.5.
Die freie Distanz $d_{\rm F}$ nimmt mit wachsendem Gedächtnis $m$ zu, vorausgesetzt, man verwendet für die Übertragungsfunktionsmatrix $\mathbf{G}(D)$ geeignete Polynome. In der Tabelle sind für Rate–$1/2$–Faltungscodes die $n = 2$ Polynome zusammen mit dem $d_{\rm F}$–Wert angegeben. Von Bedeutung ist insbesondere der sog. Industriestandardcode mit $m = 6$ ⇒ $64$ Zustände und der freien Distanz $d_{\rm F} = 10$.
Das folgende Beispiel zeigt, welche Auswirkungen es hat, wenn man ungünstige Polynome zugrundelegt.
Verwendet man $\mathbf{G}(D) = (1 + D, \ 1 + D^2)$, so ändert sich das Zustandsübergangsdiagramm gegenüber dem Standard–Coder ⇒ Seite 2a nur wenig. Die Auswirkungen sind aber gravierend:
- Die freie Distanz ist nun nicht mehr $d_{\rm F} = 5$, sondern nur noch $d_{\rm F} = 3$, wobei die Codesequenz $\underline{x} = (11, 01, 00, 00, \ ...)$ zur Informationssequenz $\underline{u} = \underline{1} = (1, 1, 1, 1, \ ...)$ gehört.
- Das heißt: Durch nur drei Übertragungsfehler an den Positionen 1, 2, und 4 verfälscht man die Einssequenz $(\underline{1})$ in die Nullsequenz $(\underline{0})$ und produziert so unendlich viele Decodierfehler.
- Einen Faltungscodierer mit diesen Eigenschaften bezeichnet man als katastrophal. Der Grund für dieses extrem ungünstige Verhalten ist, dass hier $1 + D$ und $1 + D^2$ nicht teilerfemd sind.
Terminierte Faltungscodes
Bei der theoretischen Beschreibung der Faltungscodes geht man stets von Informationssequenzen $\underline{u}$ und Codesequenzen $\underline{x}$ aus, die per Definition unendlich lang sind. In praktischen Anwendungen, siehe zum Beispiel GSM und UMTS verwendet man dagegen stets eine Informationssequenz endlicher Länge $L$. Bei einem Rate–$1/n$–Faltungscode hat dann die Codesequenz mindestens die Länge $n \cdot L$.
Die Grafik zeigt ohne Hinterlegung das Trellis unseres Standard–Rate–$1/2$–Faltungscodes bei binärer Eingangsfolge $\underline{u}$ der endlichen Länge $L = 128$. Damit hat die Codefolge $\underline{x}$ die Länge $2 \cdot L = 256$. Aufgrund des undefinierten Endzustands ist eine vollständige Maximum–Likelihood–Decodierung der gesendeten Folge allerdings nicht möglich. Da man nicht weiß, welcher der Zustände $S_0, \ ... \ , \ S_3$ sich für $i > L$ einstellen würden, wird die Fehlerwahrscheinlichkeit (etwas) größer sein als im Grenzfall $L → ∞$.
Um dies zu verhindern, terminiert man den Faltungscode entsprechend der Hinterlegung in obiger Grafik:
- Man fügt an die $L = 128$ Informationsbits noch $m = 2$ Nullen an ⇒ $L' = 130$.
- Damit ergibt sich beispielsweise für den farblich hervorgehobenen Pfad durch das Trellis:
- \[\underline{x}' = (11\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 00 \hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm},\hspace{0.05cm} 10\hspace{0.05cm},\hspace{0.05cm}00\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 01\hspace{0.05cm},\hspace{0.05cm} 11 \hspace{0.05cm} ) \]
- \[\Rightarrow \hspace{0.3cm}\underline{u}' = (1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 1 \hspace{0.05cm},\hspace{0.05cm} ...\hspace{0.1cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm}1\hspace{0.05cm},\hspace{0.05cm} 1\hspace{0.05cm},\hspace{0.05cm} 0\hspace{0.05cm},\hspace{0.05cm} 0 \hspace{0.05cm} ) \hspace{0.05cm}.\]
- Das Trellis endet nun stets (also unabhängig von den Daten) im definierten Endzustand $S_0$ und man erreicht so die bestmögliche Fehlerwahrscheinlichkeit entsprechend Maximum–Likelihood.
- Die Verbesserung hinsichtlich der Fehlerwahrscheinlichkeit erkauft man sich allerdings auf Kosten einer kleineren Coderate. Gilt $L >> m$, so ist dieser Verlust nur gering. Im betrachteten Beispiel ergibt sich mit Terminierung die Coderate $R' = 0.5 \cdot L/(L + m) \approx 0.492$ anstelle von $R = 0.5$.
Punktierte Faltungscodes
Wir gehen von einem Faltungscode der Rate $R_0 = 1/n_0$ aus, den wir Muttercode nennen. Streicht man von dessen Codesequenz einige Bits entsprechend einem vorgegebenen Muster, so spricht man von einem punktierten Faltungscode (englisch: Punctured Convolutional Code) mit der Coderate $R > R_0$.
Die Punktierung geschieht mittels der Punktierungsmatrix $\mathbf{P}$ mit folgenden Eigenschaften:
- Die Zeilenzahl ist $n_0$, die Spaltenzahl gleich der Punktierungsperiode $p$, die durch die gewünschte Coderate bestimmt wird.
- Die $n_0 \cdot p$ Matrixelemente $P_{ij}$ sind binär ($0$ oder $1$). Bei $P_{ij} = 1$ wird das entsprechende Codebit übernommen, bei $P_{ij} = 0$ punktiert.
- Die Rate des punktierten Faltungscodes ergibt sich als der Quotient aus $p$ und der Anzahl $N_1$ der Einsen in der $\mathbf{P}$–Matrix.
Man findet günstig punktierte Faltungscodes üblicherweise nur mittels computergestützter Suche. Dabei bezeichnet man einen punktierten Faltungscode dann als günstig, wenn er
- die gleiche Gedächtnisordnung $m$ aufweist wie der Muttercode (auch die Gesamteinflusslänge ist in beiden Fällen gleich: $\nu = m + 1$),
- eine möglichst große freie Distanz $d_{\rm F}$ besitzt, die natürlich kleiner ist als die des Muttercodes.
\[{\boldsymbol{\rm P}} = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}\hspace{0.3cm}\Rightarrow \hspace{0.3cm} p = 3\hspace{0.05cm}, \hspace{0.2cm}N_1 = 4\]
einen punktierten Faltungscode der Rate $R = p/N_1 = 3/4$. Wir betrachten hierzu folgende Konstellation:
- Informationssequenz: $\hspace{2cm} \underline{u} = (1, 0, 0, 1, 1, 0, \ ...)$,
- Codesequenz ohne Punktierung: $\hspace{0.2cm} \underline{x} = (11, 1 \color{grey}{0}, \color{gray}{1}1, 11, 0\color{gray}{1}, \color{gray}{0}1, \ ...)$,
- Codesequenz mit Punktierung: $\hspace{0.40cm} \underline{x}' = (11, 1\_, \_1, 11, 0\_, \_1, \ ...)$,
- Empfangssequenz ohne Fehler: $\hspace{0.38cm} \underline{y} = (11, 1\_, \_1, 11, 0\_, \_1, \ ...)$,
- Modifizierte Empfangssequenz: $\hspace{0.3cm} \underline{y}' = (11, 1\rm E, E1, 11, 0E, E1, \ ...)$.
Jedes punktierte Bit in der Empfangssequenz $\underline{y}$ (markiert durch einen Unterstrich) wird also durch ein Erasure $\rm E$ ersetzt – siehe Binary Erasure Channel. Ein solches durch die Punktierung entstandene Erasure wird vom Decoder genauso behandelt wie eine Auslöschung durch den Kanal.
Natürlich erhöht sich durch die Punktierung die Fehlerwahrscheinlichkeit. Dies kann man bereits daran erkennen, dass die freie Distanz nach der Punktierung auf $d_{\rm F} = 3$ sinkt. Demgegenüber besitzt der Muttercode die freie Distanz $d_{\rm F} = 5$.
Eine Anwendung findet die Punktierung zum Beispiel bei den so genannten RCPC–Codes (Rate Compatible Punctered Convolutional Codes). Näheres hierzu in der Aufgabe A3.8.
Aufgaben
A3.6 Zustandsübergangsdiagramm
Zusatzaufgaben:3.6 Übergangsdiagramm für m = 3
A3.7 Vergleich zweier Faltungscoder
Zusatzaufgaben:3.7 Welcher Code ist katastrophal ?