Aufgaben:Aufgabe 4.16: Binary Frequency Shift Keying: Unterschied zwischen den Versionen
Zeile 74: | Zeile 74: | ||
:$$f_{\rm T} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 + f_1) = \underline{4 \cdot 1/T}\hspace{0.05cm},$$ | :$$f_{\rm T} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 + f_1) = \underline{4 \cdot 1/T}\hspace{0.05cm},$$ | ||
:$$ \Delta f_{\rm A} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 - f_1)= \underline{0.5 \cdot 1/T }\hspace{0.05cm}.$$ | :$$ \Delta f_{\rm A} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 - f_1)= \underline{0.5 \cdot 1/T }\hspace{0.05cm}.$$ | ||
− | |||
'''(2)''' Mit der angegebenen Gleichung gilt für den Modulationsindex: | '''(2)''' Mit der angegebenen Gleichung gilt für den Modulationsindex: | ||
:$$h = 2 \cdot \Delta f_{\rm A} \cdot T = 2 \cdot 0.5 \cdot 1/T \cdot T \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{h= 1}\hspace{0.05cm}. $$ | :$$h = 2 \cdot \Delta f_{\rm A} \cdot T = 2 \cdot 0.5 \cdot 1/T \cdot T \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{h= 1}\hspace{0.05cm}. $$ | ||
− | |||
'''(3)''' Das innere Produkt der TP–Signale lautet: | '''(3)''' Das innere Produkt der TP–Signale lautet: | ||
:$$< \hspace{-0.05cm} s_{\rm TP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = | :$$< \hspace{-0.05cm} s_{\rm TP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = | ||
− | \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = | + | \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = \frac{E}{T} \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T} \,{\rm d} t = \frac{E}{{\rm j}2\pi h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ] |
− | |||
\hspace{0.05cm}.$$ | \hspace{0.05cm}.$$ | ||
Zeile 91: | Zeile 88: | ||
\hspace{0.3cm}\Rightarrow \hspace{0.3cm} h = 1, 2, 3, ...$$ | \hspace{0.3cm}\Rightarrow \hspace{0.3cm} h = 1, 2, 3, ...$$ | ||
− | Richtig sind demzufolge die <u>Lösungsvorschläge 3 und 4</u> | + | Richtig sind demzufolge die <u>Lösungsvorschläge 3 und 4</u>: |
+ | *Ist der Modulationsindex $h$ ganzzahlig, so kann nichtkohärent demoduliert werden, ohne dass die Orthogonalität verletzt wird. | ||
− | '''(4)''' Für das innere Produkt der Bandpass–Signale kann nach den Erläuterungen auf der Angabenseite geschrieben werden: | + | '''(4)''' Richtig sind die <u>Lösungsvorschläge 1, 3 und 4</u>: |
+ | *Für das innere Produkt der Bandpass–Signale kann nach den Erläuterungen auf der Angabenseite geschrieben werden: | ||
:$$< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= | :$$< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= | ||
− | {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm} \right ] = {\rm Re}\left [ \frac{E}{{\rm j}2\pi h} \cdot \left ( {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ) \right ] | + | {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm} \right ] = {\rm Re}\left [ \frac{E}{{\rm j}2\pi h} \cdot \left ( {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ) \right ]$$ |
− | :$$ \hspace{-0. | + | :$$ \Rightarrow\hspace{0.3cm}< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \frac{E}{2\pi h} \cdot \left ( \sin( 2\pi h) - {\rm j} \cdot [\cos( 2\pi h) - 1 ]\right ) \right ] = \frac{E \cdot \sin( 2\pi h)}{2\pi h} \hspace{0.05cm}.$$ |
− | + | *Dieses Ergebnis ist immer dann $0$, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist. | |
− | Dieses Ergebnis ist immer dann $0$, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist | ||
− | '''(5)''' Richtig ist hier nur der <u>Lösungsvorschlag 2</u>. Für kohärente Demodulation muss $h$ ein Vielfaches von $0.5$ sein. Ist nichtkohärente Demodulation möglich, wie zum Beispiel im hier betrachteten Fall ($h = 1$), so ist auch kohärente Demodulation anwendbar. Dagegen kann für $h = 0.5$ zwar kohärent demoduliert werden, aber eine nichtkohärente Demodulation (die auf die Hüllkurve angewiesen ist) versagt. | + | '''(5)''' Richtig ist hier nur der <u>Lösungsvorschlag 2</u>. |
+ | *Für kohärente Demodulation muss $h$ ein Vielfaches von $0.5$ sein. | ||
+ | *Ist nichtkohärente Demodulation möglich, wie zum Beispiel im hier betrachteten Fall ($h = 1$), so ist auch kohärente Demodulation anwendbar. | ||
+ | *Dagegen kann für $h = 0.5$ zwar kohärent demoduliert werden, aber eine nichtkohärente Demodulation (die auf die Hüllkurve angewiesen ist) versagt. | ||
{{ML-Fuß}} | {{ML-Fuß}} | ||
Version vom 26. November 2017, 15:34 Uhr
Bei der binären FSK werden die beiden Nachrichten $m_0$ und $m_1$ durch zwei unterschiedliche Frequenzen dargestellt. Für die beiden möglichen Bandpass–Signale gilt dann jeweils im Bereich $0 ≤ t ≤ T$ mit $f_0 = f_{\rm T} + \Delta f_{\rm A}$ sowie $f_1 = f_{\rm T} \, – \Delta f_{\rm A}$:
- $$s_{\rm BP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_0 t)\hspace{0.05cm},$$
- $$ s_{\rm BP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{2E/T} \cdot \cos( 2\pi f_1 t)\hspace{0.05cm}.$$
Die Grafik zeigt beispielhafte Signale. In obiger Gleichung gibt $f_{\rm T}$ die Trägerfrequenz an und $\Delta f_{\rm A}$ den Frequenzhub als die maximale Abweichung der Augenblicksfrequenz von der Trägerfrequenz an. $T$ ist die Symboldauer und $E$ die Signalenergie. Dabei gilt gleichermaßen für die mittlere Symbolenergie und die mittlere Bitenergie:
- $$E_{\rm S} = E_{\rm B} = E\hspace{0.05cm}.$$
Meist arbeitet man mit dem Modulationsindex, der als das Verhältnis von Gesamtfrequenzhub und Symbolrate definiert ist:
- $$h = \frac{2 \cdot \Delta f_{\rm A}}{1/T} = 2 \cdot \Delta f_{\rm A} \cdot T \hspace{0.05cm}.$$
Die äquivalente Tiefpassdarstellung führt unter Verwendung von $h$ zu den beiden komplexen Signalen
- $$ s_{\rm TP0}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}+{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm},$$
- $$ s_{\rm TP1}(t) \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \sqrt{E/T} \cdot {\rm e}^{\hspace{0.05cm}-{\rm j} \hspace{0.03cm}\cdot \hspace{0.03cm} \pi \hspace{0.03cm}\cdot \hspace{0.03cm} h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T}\hspace{0.05cm},\hspace{0.2cm} 0 \le t \le T\hspace{0.05cm}.$$
Eine orthogonale FSK liegt vor, wenn das innere Produkt den Wert $0$ ergibt:
- $$< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t =0 \hspace{0.05cm}.$$
In diesem Fall ist auch eine nichtkohärente Demodulation wie im Kapitel Trägerfrequenzensysteme mit nichtkohärenter Demodulation beschrieben möglich.
Das innere Produkt der BP–Signale kann aus dem inneren Produkt der TP–Signale durch Realteilbildung ermittelt werden:
- $$< \hspace{-0.05cm}s_{\rm BP0}(t) \cdot s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.15cm} \right ]\hspace{0.05cm}.$$
Gilt $〈 s_{\rm BP0}(t) \cdot s_{\rm BP1}(t)〉 = 0$, aber gleichzeitig auch $〈 s_{\rm TP0}(t) \cdot s_{\rm TP1}(t)〉 ≠ 0$, so ist zwar eine kohärente Demodulation möglich, aber keine nichtkohärente.
Hinweise:
- Die Aufgabe gehört zum Kapitel Trägerfrequenzsysteme mit kohärenter Demodulation.
- Bezug genommen wird insbesondere auf die Seiten Binary_Frequency_Shift_Keying(BPSK) und Minimum Shift Keying (MSK).
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
Fragebogen
Musterlösung
- $$f_{\rm T} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 + f_1) = \underline{4 \cdot 1/T}\hspace{0.05cm},$$
- $$ \Delta f_{\rm A} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} {1}/{2}\cdot (f_0 - f_1)= \underline{0.5 \cdot 1/T }\hspace{0.05cm}.$$
(2) Mit der angegebenen Gleichung gilt für den Modulationsindex:
- $$h = 2 \cdot \Delta f_{\rm A} \cdot T = 2 \cdot 0.5 \cdot 1/T \cdot T \hspace{0.3cm} \Rightarrow \hspace{0.3cm} \underline{h= 1}\hspace{0.05cm}. $$
(3) Das innere Produkt der TP–Signale lautet:
- $$< \hspace{-0.05cm} s_{\rm TP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = \int_{0}^{T} s_{\rm TP0}(t) \cdot s_{\rm TP1}^{\star}(t) \,{\rm d} t = \frac{E}{T} \cdot \int_{0}^{T} {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h \hspace{0.03cm}\cdot \hspace{0.03cm}t/T} \,{\rm d} t = \frac{E}{{\rm j}2\pi h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ] \hspace{0.05cm}.$$
Orthogonalität bedeutet, dass dieses innere Produkt $0$ sein muss:
- $$< \hspace{-0.05cm} s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm} > \hspace{0.2cm} = \frac{E}{{\rm j}2\pi h} \cdot \left [ {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ] = 0 \hspace{0.3cm}\Rightarrow \hspace{0.3cm} h = 1, 2, 3, ...$$
Richtig sind demzufolge die Lösungsvorschläge 3 und 4:
- Ist der Modulationsindex $h$ ganzzahlig, so kann nichtkohärent demoduliert werden, ohne dass die Orthogonalität verletzt wird.
(4) Richtig sind die Lösungsvorschläge 1, 3 und 4:
- Für das innere Produkt der Bandpass–Signale kann nach den Erläuterungen auf der Angabenseite geschrieben werden:
- $$< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \hspace{0.1cm}< \hspace{-0.05cm}s_{\rm TP0}(t) \cdot s_{\rm TP1}(t) \hspace{-0.05cm}> \hspace{0.2cm} \right ] = {\rm Re}\left [ \frac{E}{{\rm j}2\pi h} \cdot \left ( {\rm e}^{\hspace{0.05cm}{\rm j} 2\pi h} - 1 \right ) \right ]$$
- $$ \Rightarrow\hspace{0.3cm}< \hspace{-0.05cm}s_{\rm BP0}(t) \hspace{0.01cm} \ \cdot \ \hspace{0.01cm} s_{\rm BP1}(t) \hspace{-0.05cm}> \hspace{0.2cm}= {\rm Re}\left [ \frac{E}{2\pi h} \cdot \left ( \sin( 2\pi h) - {\rm j} \cdot [\cos( 2\pi h) - 1 ]\right ) \right ] = \frac{E \cdot \sin( 2\pi h)}{2\pi h} \hspace{0.05cm}.$$
- Dieses Ergebnis ist immer dann $0$, wenn der Modulationsindex $h$ ein ganzzahliges Vielfaches von $0.5$ ist.
(5) Richtig ist hier nur der Lösungsvorschlag 2.
- Für kohärente Demodulation muss $h$ ein Vielfaches von $0.5$ sein.
- Ist nichtkohärente Demodulation möglich, wie zum Beispiel im hier betrachteten Fall ($h = 1$), so ist auch kohärente Demodulation anwendbar.
- Dagegen kann für $h = 0.5$ zwar kohärent demoduliert werden, aber eine nichtkohärente Demodulation (die auf die Hüllkurve angewiesen ist) versagt.