Aufgaben:Aufgabe 5.7Z: Nochmals McCullough-Modell: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 5.7Z Nochmals MC-Modell nach 5.7Z Nochmals McCullough-Modell) |
|||
Zeile 2: | Zeile 2: | ||
{{quiz-Header|Buchseite=Digitalsignalübertragung/Bündelfehlerkanäle}} | {{quiz-Header|Buchseite=Digitalsignalübertragung/Bündelfehlerkanäle}} | ||
− | [[Datei:P_ID1845__Dig_Z_5_7.png|right|frame|Fehlerabstandsverteilung und | + | [[Datei:P_ID1845__Dig_Z_5_7.png|right|frame|Fehlerabstandsverteilung und Fehlerkorrelationsfunktion von GE–Modell und äquivalentem MC-Modell]] |
− | Wir betrachten wie auch in | + | Wir betrachten wie auch in [[Aufgaben:5.6:_Fehlerkorrelationsdauer|Aufgabe 5.6]], [[Aufgaben:5.6Z_GE-Modelleigenschaften|Aufgabe 5.6Z]] und [[Aufgaben:5.7_McCullough-Parameter_aus_Gilbert-Elliott-Parameter|Aufgabe 5.7]] das Bündelfehler–Kanalmodell nach Gilbert und Elliott (GE–Modell) mit den Kenngrößen |
:$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | :$$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, | ||
− | \hspace{0.2cm}p_{\rm B} = 0.1, | + | \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} |
− | + | p(\rm | |
G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ | G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ | ||
\hspace{-0.1cm} 0.1, \hspace{0.2cm} p(\rm | \hspace{-0.1cm} 0.1, \hspace{0.2cm} p(\rm | ||
Zeile 16: | Zeile 16: | ||
− | Die Wahrscheinlichkeiten des MC–Modells wurden in der [[Aufgaben:5. | + | Die Wahrscheinlichkeiten des MC–Modells wurden in der [[Aufgaben:5.7_McCullough-Parameter_aus_Gilbert-Elliott-Parameter|Aufgabe 5.7]] wie folgt ermittelt (Bezeichnungen entsprechend der Grafik zur Aufgabe 5.7, alle mit $q$ anstelle von $p$): |
:$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061, | :$$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061, | ||
− | \hspace{0.2cm}q_{\rm B} = 0.1949, | + | \hspace{0.2cm}q_{\rm B} = 0.1949,\hspace{0.2cm} |
− | + | q(\rm | |
G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ | G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ | ||
\hspace{-0.1cm} 0.5528, \hspace{0.2cm} q(\rm | \hspace{-0.1cm} 0.5528, \hspace{0.2cm} q(\rm | ||
Zeile 26: | Zeile 26: | ||
Die obere Grafik zeigt die aus $N = 10^6$ Folgenelementen simulativ ermittelten Funktionen $V_a(k)$ und $\varphi_e(k)$ für das GE– und das MC–Modell. Hier ergeben sich noch leichte Abweichungen. Im Grenzfall für $N → ∞$ stimmen dagegen Fehlerkorrelationsfunktion und Fehlerabstandsverteilung beider Modelle exakt überein. | Die obere Grafik zeigt die aus $N = 10^6$ Folgenelementen simulativ ermittelten Funktionen $V_a(k)$ und $\varphi_e(k)$ für das GE– und das MC–Modell. Hier ergeben sich noch leichte Abweichungen. Im Grenzfall für $N → ∞$ stimmen dagegen Fehlerkorrelationsfunktion und Fehlerabstandsverteilung beider Modelle exakt überein. | ||
− | In dieser Aufgabe sollen nun wichtige Beschreibungsgrößen wie Zustandswahrscheinlichkeiten, mittlere Fehlerwahrscheinlichkeiten und Korrelationsdauer | + | In dieser Aufgabe sollen nun wichtige Beschreibungsgrößen des GE-Modells wie |
+ | *Zustandswahrscheinlichkeiten, | ||
+ | *mittlere Fehlerwahrscheinlichkeiten, und | ||
+ | *Korrelationsdauer | ||
+ | direkt aus den $q$–Parametern des MC–Modells ermittelt werden. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
''Hinweise:'' | ''Hinweise:'' | ||
Zeile 45: | Zeile 39: | ||
* Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | * Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein. | ||
* Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden: | * Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden: | ||
− | + | :(a) Die Zustandswahrscheinlichkeiten des GE–Modells sind | |
:$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm | :$$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm | ||
G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm | G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm | ||
Zeile 51: | Zeile 45: | ||
\hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G | \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G | ||
}\hspace{0.05cm}.$$ | }\hspace{0.05cm}.$$ | ||
− | + | :(b) Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt | |
:$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} | :$$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} | ||
= \varphi_{e}(k = 0 )\hspace{0.05cm}.$$ | = \varphi_{e}(k = 0 )\hspace{0.05cm}.$$ | ||
− | + | :(c) Die Korrelationsdauer des GE–Modells berechnet sich zu | |
:$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} | :$$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} | ||
B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 | B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 | ||
Zeile 63: | Zeile 57: | ||
===Fragebogen=== | ===Fragebogen=== | ||
<quiz display=simple> | <quiz display=simple> | ||
− | {Berechnen Sie die Wahrscheinlichkeiten $\ | + | {Berechnen Sie die Wahrscheinlichkeiten $\alpha_{\rm G}$ und $\alpha_{\rm B}$, dass sich das MC–Modell im Zustand „G” bzw. im Zustand „B” befindet. |
|type="{}"} | |type="{}"} | ||
− | $\alpha_{\rm G} \ = \ ${ 0.5975 3% } | + | $\alpha_{\rm G} \hspace{0.05cm} = \ ${ 0.5975 3% } |
$\alpha_{\rm B} \ = \ ${ 0.4025 3% } | $\alpha_{\rm B} \ = \ ${ 0.4025 3% } | ||
Zeile 72: | Zeile 66: | ||
${\rm E}[a] \ = \ ${ 100.1 3% } | ${\rm E}[a] \ = \ ${ 100.1 3% } | ||
− | {Wie groß ist der | + | {Wie groß ist der Fehlerkorrelationsfunktionswert für $k = 0$? |
|type="{}"} | |type="{}"} | ||
$\varphi_e(k = 0) \ = \ ${ 0.01 3% } | $\varphi_e(k = 0) \ = \ ${ 0.01 3% } | ||
− | {Geben Sie die Fehlerkorrelationsdauer $D_{\rm K}$ als Funktion der MC–Parameter $q_{\rm G}, q_{\rm B}, q(\rm G|B)$ und $q(\rm B|G)$ an. Welches Ergebnis ist richtig? | + | {Geben Sie die Fehlerkorrelationsdauer $D_{\rm K}$ als Funktion der MC–Parameter $q_{\rm G}, q_{\rm B}, q(\rm G\hspace{0.05cm}|\hspace{0.05cm}B)$ und $q(\rm B\hspace{0.05cm}|\hspace{0.05cm}G)$ an. <br>Welches Ergebnis ist richtig? |
|type="[]"} | |type="[]"} | ||
− | - $D_{\rm K} = [q({\rm B|G}) + q({\rm G|B})]^{ | + | - $D_{\rm K} = [q({\rm B\hspace{0.05cm}|\hspace{0.05cm}G}) + q({\rm G\hspace{0.05cm}|\hspace{0.05cm}B})]^{-1} \ -1$, |
− | + $D_{\rm K} = [q_{\rm G} \cdot q({\rm G|B}) + q_{\rm B} \cdot q({\rm G|B})]^{ | + | + $D_{\rm K} = [q_{\rm G} \cdot q({\rm G|B}) + q_{\rm B} \cdot q({\rm G|B})]^{-1} \ -1$. |
</quiz> | </quiz> | ||
Version vom 1. Dezember 2017, 13:43 Uhr
Wir betrachten wie auch in Aufgabe 5.6, Aufgabe 5.6Z und Aufgabe 5.7 das Bündelfehler–Kanalmodell nach Gilbert und Elliott (GE–Modell) mit den Kenngrößen
- $$p_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.001, \hspace{0.2cm}p_{\rm B} = 0.1,\hspace{0.2cm} p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.1, \hspace{0.2cm} p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.01\hspace{0.05cm}.$$
Aus diesen vier Wahrscheinlichkeiten lassen sich die entsprechenden Kenngrößen des Kanalmodells nach McCullough (MC–Modell) so ermitteln, dass beide Modelle die genau gleichen statistischen Eigenschaften besitzen, nämlich
- exakt gleiche Fehlerabstandsverteilung $V_a(k)$,
- exakt gleiche Fehlerkorrelationsfunktion $\varphi_e(k)$.
Die Wahrscheinlichkeiten des MC–Modells wurden in der Aufgabe 5.7 wie folgt ermittelt (Bezeichnungen entsprechend der Grafik zur Aufgabe 5.7, alle mit $q$ anstelle von $p$):
- $$q_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.0061, \hspace{0.2cm}q_{\rm B} = 0.1949,\hspace{0.2cm} q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)\hspace{-0.1cm} \ = \ \hspace{-0.1cm} 0.5528, \hspace{0.2cm} q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G) = 0.3724\hspace{0.05cm}.$$
Die obere Grafik zeigt die aus $N = 10^6$ Folgenelementen simulativ ermittelten Funktionen $V_a(k)$ und $\varphi_e(k)$ für das GE– und das MC–Modell. Hier ergeben sich noch leichte Abweichungen. Im Grenzfall für $N → ∞$ stimmen dagegen Fehlerkorrelationsfunktion und Fehlerabstandsverteilung beider Modelle exakt überein.
In dieser Aufgabe sollen nun wichtige Beschreibungsgrößen des GE-Modells wie
- Zustandswahrscheinlichkeiten,
- mittlere Fehlerwahrscheinlichkeiten, und
- Korrelationsdauer
direkt aus den $q$–Parametern des MC–Modells ermittelt werden.
Hinweise:
- Die Aufgabe gehört zum Themengebiet des Kapitels Bündelfehlerkanäle.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Aus den oben genannten Aufgaben können folgende Ergebnisse weiterverwendet werden:
- (a) Die Zustandswahrscheinlichkeiten des GE–Modells sind
- $$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G }\hspace{0.05cm}.$$
- (b) Die mittlere Fehlerwahrscheinlichkeit des GE–Modells beträgt
- $$p_{\rm M} = w_{\rm G} \cdot p_{\rm G} + w_{\rm B} \cdot p_{\rm B} = \varphi_{e}(k = 0 )\hspace{0.05cm}.$$
- (c) Die Korrelationsdauer des GE–Modells berechnet sich zu
- $$D_{\rm K} =\frac{1}{{\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )}-1 \hspace{0.05cm}.$$
Fragebogen
Musterlösung
- $$w_{\rm G} = \frac{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{p(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + p(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)} = 0.909 \hspace{0.05cm},\hspace{0.2cm} w_{\rm B} = 1 - w_{\rm G }= 0.091\hspace{0.05cm}.$$
Dagegen erhält man beim MC–Modell:
- $$\alpha_{\rm G} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} \frac{q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B)}{q(\rm G\hspace{0.05cm}|\hspace{0.05cm} B) + q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G)}= \frac{0.5528}{0.5528 + 0.3724}\hspace{0.15cm}\underline {= 0.5975}\hspace{0.05cm},$$
- $$\alpha_{\rm B} \hspace{-0.1cm} \ = \ \hspace{-0.1cm} 1 - \alpha_{\rm G} \hspace{0.15cm}\underline {= 0.4025}\hspace{0.05cm}.$$
In der Teilaufgabe (3) der Aufgabe A5.7 wurden diese Werte schon einmal ermittelt, allerdings aus den Parametern des äquivalenten Gilbert–Elliott–Modells.
(2) Der mittlere Fehlerabstand im Kanalzustand „GOOD” ist gleich dem Kehrwert der dazugehörigen Fehlerwahrscheinlichkeit $q_{\rm G}$. Der mittlere Fehlerabstand im Zustand „B” ist dementsprechend $1/q_{\rm B}$. Durch Gewichtung mit den beiden Zustandswahrscheinlichkeiten $\alpha_{\rm G}$ und $\alpha_{\rm B}$ ergibt sich der mittlere Fehlerabstand des MC–Modells insgesamt zu
- $${\rm E}[a] =\frac{\alpha_{\rm G}}{q_{\rm G}} + \frac{\alpha_{\rm B}}{q_{\rm B}}=\frac{0.5975}{0.0061} + \frac{0.4025}{0.1949} = 97.95 + 2.06\hspace{0.15cm}\underline { = 100.1}\hspace{0.05cm}.$$
Dieser Wert sollte natürlich genau so groß wie beim entsprechenden GE–Modell sein. Die kleine Abweichung von $0.1$ ist auf Rundungsfehler zurückzuführen.
(3) Auch hier gilt der Zusammenhang $\varphi_e(k = 0) = p_{\rm M}$. Die mittlere Fehlerwahrscheinlichkeit ist aber gleich dem Kehrwert des mittleren Fehlerabstands ${\rm E}[a]$. Daraus $\varphi_e(k = 0) \ \underline {= 0.01}$.
(4) Beim GE–Modell ist die Korrelationsdauer wie folgt gegeben ($S$ steht für Summe):
- $$D_{\rm K} = {1}/{S}-1 \hspace{0.05cm},\hspace{0.2cm}S = {\rm Pr}(\rm G\hspace{0.05cm}|\hspace{0.05cm} B ) + {\rm Pr}(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )\hspace{0.05cm}.$$
Weiter gilt mit den Angaben zur Aufgabe A5.7:
- $$q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) = \frac{\alpha_{\rm B} \cdot S}{\alpha_{\rm G} \cdot q_{\rm B} + \alpha_{\rm B} \cdot q_{\rm G}} \hspace{0.05cm}, \hspace{0.2cm}q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })= \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G )$$
- $$\Rightarrow \hspace{0.3cm} S = q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G }) + q_{\rm B} \cdot \frac{\alpha_{\rm G}}{\alpha_{\rm B}} \cdot q(\rm B\hspace{0.05cm}|\hspace{0.05cm} G ) = q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G })+ q_{\rm B} \cdot q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B }) \hspace{0.05cm}.$$
- $$\Rightarrow \hspace{0.3cm}D_{\rm K} =\frac{1}{q_{\rm G} \cdot q({\rm B\hspace{0.05cm}|\hspace{0.05cm} G })+ q_{\rm B} \cdot q({\rm G\hspace{0.05cm}|\hspace{0.05cm} B })}-1 \hspace{0.05cm}.$$
Richtig ist also der Lösungsvorschlag 2. Mit den gegebenen Parameterwerten erhält man zum Beispiel:
- $$D_{\rm K} =\frac{1}{0.0061 \cdot 0.3724 + 0.1949 \cdot 0.5528}-1=\frac{1}{0.11}-1 {\approx 8.09}\hspace{0.05cm}.$$
Es ergibt sich exakt der gleiche Wert wie in der Aufgabe A5.6c.