Aufgaben:Aufgabe 4.08Z: Grundlegendes zum Interleaving: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 42: Zeile 42:
 
|type="[]"}
 
|type="[]"}
 
- $\underline{u}_{\pi} = (110'100'100'011'111'110'010'001'...)$,
 
- $\underline{u}_{\pi} = (110'100'100'011'111'110'010'001'...)$,
+ $\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'...)$
+
+ $\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'...)$.
  
 
{Die verwürfelte Folge sei $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. Wie lautet die Folge nach dem De–Interleaving?
 
{Die verwürfelte Folge sei $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. Wie lautet die Folge nach dem De–Interleaving?

Version vom 11. Dezember 2017, 16:10 Uhr

Interleaver–Beschreibung für drei Beispiele

Interleaving (deutsch: Verwürfelung) ist zum Beispiel bei einem Kanal mit Bündelfehlercharakteristik erforderlich, um die Fehler innerhalb des Bündels über einen genügend großen Bereich so zu verteilen, dass diese anschließend weitgehend korrigiert (oder zumindest erkannt) werden können.

Für Turbocodes, die auf RSC–Coder (Recursive Systematic Convolutional Encoder) basieren – und nur solche machen Sinn, ist Interleaving auch beim AWGN–Kanal essentiell, da es dann auch stets (einige) Eingangssequenzen gibt, die in der Ausgangsfolge nach etlichen Einsen nur noch Nullen liefern, und zwar bis ins Unendliche  ⇒  es gibt Ausgangsfolgen mit sehr kleinem Hamming–Gewicht.

Verteilt man im Coder 2 die Bits solcher Eingangssequenzen über einen weiten Bereich, so kann bei iterativer symbolweiser Decodierung das Problem durch das Zusammenspiel beider Komponentendecoder (weitgehend) beseitigt werden.

Man unterscheidet allgemein zwischen Block–Interleaver und Random–Interleaver. Bei Block–Interleaving füllt man eine Matrix mit $S$ Spalten und $Z$ Zeilen spaltenweise und liest die Matrix zeilenweise aus. Damit wird ein Informationsblock mit $I_{\rm max} = S \cdot Z \ \rm Bit$ deterministisch verwürfelt.

Rechts sind zwei Interleaver angegeben und zwar in grafischer Form durch die Zuordnung $I_{\rm Out}(I_{\rm In})$. Diese Größen stehen für „Index der Ausgangsfolge” bzw. für „Index der Eingangsfolge”. Es gilt:

$$1 \le I_{\rm Out} \le I_{\rm max} \hspace{0.05cm}, \hspace{0.5cm} 1 \le I_{\rm In} \le I_{\rm max} \hspace{0.05cm}. $$

In der Aufgabe (1) ist gefragt, ob es sich hierbei um Block–Interleaving oder Random Interleaving handelt. Letztere werden im Theorieteil in aller Kürze besprochen.

Hinweise:


Fragebogen

1

Welche Interleaver–Art ist in der Grafik auf der Angabenseite dargestellt?

Block–Interleaving,
Random–Interleaving.

2

Wieviele Zeilen ($Z$) und Spalten ($S$) hat die obere „Interleaver–Matrix 1”?

$Z \ = \ $

$S \ = \ $

3

Es gelte $\underline{u} = (1001'0001'1101'1101'0010'0111)$. Wie beginnt die verwürfelte Folge $\underline{u}_{\pi}$? Hinweis: Die Hochkommata dienen nur als Lesehilfe.

$\underline{u}_{\pi} = (110'100'100'011'111'110'010'001'...)$,
$\underline{u}_{\pi} = (101'001'000'111'100'101'011'101'...)$.

4

Die verwürfelte Folge sei $\underline{u}_{\pi} = (100'100'011'101'110'100'100'111)$. Wie lautet die Folge nach dem De–Interleaving?

$\underline{u} = (1101'0010'0011'1111'1001'0001'...)$,
$\underline{u} = (1010'0100'0111'1001'0101'1101'...)$.


Musterlösung

(1)  (2)  (3)  (4)  (5)