Aufgaben:Aufgabe 2.15Z: Nochmals RS-Blockfehlerwahrscheinlichkeit: Unterschied zwischen den Versionen
Aus LNTwww
Zeile 2: | Zeile 2: | ||
[[Datei:P_ID2574__KC_Z_2_15.png|right|frame|Wahrscheinlichkeiten der Binominalverteilung]] | [[Datei:P_ID2574__KC_Z_2_15.png|right|frame|Wahrscheinlichkeiten der Binominalverteilung]] | ||
− | Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit $t$ und [[Bounded Distance Decoding]] (BDD) erhält man mit | + | Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit $t$ und [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete#Blockfehlerwahrscheinlichkeit_f.C3.BCr_RSC_und_BDD|Bounded Distance Decoding]] (BDD) erhält man mit |
* der Codewortlänge $n$ und | * der Codewortlänge $n$ und | ||
* der Symbolverfälschungswahrscheinlichkeit $\epsilon_{\rm S}$ | * der Symbolverfälschungswahrscheinlichkeit $\epsilon_{\rm S}$ | ||
Zeile 11: | Zeile 11: | ||
\sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$ | ||
− | In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den $\rm RSC \, (7, \, 3, \, 5)_8$ und verschiedene $\epsilon_{\rm S}$–Werte berechnet und angehnähert werden. Obige Gleichung erinnert an die [[Biomialverteilung]]. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter $n = 7$ (Codewortlänge) und $\epsilon_{\rm S} = 0.25$ (Symbolverfälschungswahrscheinlichkeit). | + | In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den $\rm RSC \, (7, \, 3, \, 5)_8$ und verschiedene $\epsilon_{\rm S}$–Werte berechnet und angehnähert werden. Obige Gleichung erinnert an die [[Stochastische_Signaltheorie/Binomialverteilung|Biomialverteilung]]. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter $n = 7$ (Codewortlänge) und $\epsilon_{\rm S} = 0.25$ (Symbolverfälschungswahrscheinlichkeit). |
''Hinweise:'' | ''Hinweise:'' | ||
− | * Die Aufgabe gehört zum Kapitel [[ | + | * Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Fehlerwahrscheinlichkeit_und_Anwendungsgebiete| Fehlerwahrscheinlichkeit und Anwendungsgebiete]]. |
* Zur Kontrolle können Sie das folgende interaktive Flash–Modul nutzen: | * Zur Kontrolle können Sie das folgende interaktive Flash–Modul nutzen: | ||
# [[Wahrscheinlichkeiten der Binomialverteilung]] | # [[Wahrscheinlichkeiten der Binomialverteilung]] |
Version vom 19. Dezember 2017, 13:09 Uhr
Bei Verwendung eines Reed–Solomon–Codes mit der Korrekturfähigkeit $t$ und Bounded Distance Decoding (BDD) erhält man mit
- der Codewortlänge $n$ und
- der Symbolverfälschungswahrscheinlichkeit $\epsilon_{\rm S}$
für die Blockfehlerwahrscheinlichkeit:
- $${\rm Pr(Blockfehler)} = \sum_{f = t + 1}^{n} {n \choose f} \cdot {\varepsilon_{\rm S}}^f \cdot (1 - \varepsilon_{\rm S})^{n-f} \hspace{0.05cm}.$$
In dieser Aufgabe soll die Blockfehlerwahrscheinlichkeit für den $\rm RSC \, (7, \, 3, \, 5)_8$ und verschiedene $\epsilon_{\rm S}$–Werte berechnet und angehnähert werden. Obige Gleichung erinnert an die Biomialverteilung. Die Grafik zeigt die Wahrscheinlichkeiten der Binomialverteilung für die Parameter $n = 7$ (Codewortlänge) und $\epsilon_{\rm S} = 0.25$ (Symbolverfälschungswahrscheinlichkeit).
Hinweise:
- Die Aufgabe gehört zum Kapitel Fehlerwahrscheinlichkeit und Anwendungsgebiete.
- Zur Kontrolle können Sie das folgende interaktive Flash–Modul nutzen:
Fragebogen
Musterlösung
(1)
(2)
(3)
(4)
(5)