Aufgaben:Aufgabe 1.09Z: Erweiterung und/oder Punktierung: Unterschied zwischen den Versionen
Zeile 1: | Zeile 1: | ||
− | {{quiz-Header|Buchseite=Kanalcodierung/Allgemeine Beschreibung linearer Blockcodes | + | {{quiz-Header|Buchseite=Kanalcodierung/Allgemeine Beschreibung linearer Blockcodes}} |
− | |||
− | }} | ||
[[Datei:P_ID2403__KC_Z_1_9.png|right|frame|Zur Erweiterung und Punktierung]] | [[Datei:P_ID2403__KC_Z_1_9.png|right|frame|Zur Erweiterung und Punktierung]] | ||
Zeile 9: | Zeile 7: | ||
Zur Ratenanpassung gibt es verschiedene Möglichkeiten | Zur Ratenanpassung gibt es verschiedene Möglichkeiten | ||
− | * <b><span style="color: rgb(204, 0, 0);">Erweiterung</span></b> (englisch ''Extension''): Ausgehend vom $(n, k)$–Code, dessen Prüfmatrix | + | * <b><span style="color: rgb(204, 0, 0);">Erweiterung</span></b> (englisch ''Extension''): Ausgehend vom $(n, \, k)$–Code, dessen Prüfmatrix $\mathbf{H}$ gegeben ist, erhält man einen $(n+1, \, k)$–Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit |
:$$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$ | :$$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$ | ||
− | hinzu und damit auch eine neue Prüfgleichung, die in | + | hinzu und damit auch eine neue Prüfgleichung, die in $\mathbf{H}'$ berücksichtigt ist. |
− | * <b><span style="color: rgb(204, 0, 0);">Punktierung</span></b> (englisch ''Puncturing''): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix | + | * <b><span style="color: rgb(204, 0, 0);">Punktierung</span></b> (englisch ''Puncturing''): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, \, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix $\mathbf{H}$ eine Zeile und eine Spalte zu streichen. |
− | * <b><span style="color: rgb(204, 0, 0);">Verkürzung</span></b> (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, k–1)$–Code kleinerer Rate. | + | * <b><span style="color: rgb(204, 0, 0);">Verkürzung</span></b> (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, \, k–1)$–Code kleinerer Rate. |
− | In dieser Aufgabe sollen ausgehend von einem (5, 2)–Blockcode | + | |
+ | In dieser Aufgabe sollen ausgehend von einem $(5, \, 2)$–Blockcode | ||
:$$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$ | :$$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$ | ||
folgende Codes konstruiert und analysiert werden: | folgende Codes konstruiert und analysiert werden: | ||
− | *ein (6, 2)–Code durch einmalige Erweiterung, | + | *ein $(6, \, 2)$–Code durch einmalige Erweiterung, |
− | *ein (7, 2)–Code durch nochmalige Erweiterung, | + | *ein $(7, \, 2)$–Code durch nochmalige Erweiterung, |
− | *ein (4, 2)–Code durch Punktierung. | + | *ein $(4, \, 2)$–Code durch Punktierung. |
− | Die Prüfmatrix und die Generatormatrix des systematischen (5, 2)–Codes lauten: | + | Die Prüfmatrix und die Generatormatrix des systematischen $(5, \, 2)$–Codes lauten: |
:$${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$ | :$${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$ | ||
− | '' | + | ''Hinweise'' : |
− | + | * Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes| Allgemeine Beschreibung linearer Blockcodes]]. | |
− | Die Aufgabe bezieht sich auf das Kapitel [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes| Allgemeine Beschreibung linearer Blockcodes]]. In der [[Aufgaben:1.09_Erweiterter_Hamming–Code|Aufgabe 1.09]] wird beispielhaft gezeigt, wie aus dem (7, 4, 3)–Hamming–Code durch Erweiterung ein (8, 4, 4)–Code entsteht. | + | * In der [[Aufgaben:1.09_Erweiterter_Hamming–Code|Aufgabe 1.09]] wird beispielhaft gezeigt, wie aus dem $(7, \, 4, \, 3)$–Hamming–Code durch Erweiterung ein $(8, \, 4, \, 4)$–Code entsteht. |
===Fragebogen=== | ===Fragebogen=== | ||
Zeile 43: | Zeile 42: | ||
{Geben Sie die Kenngrößen des vorgegebenen (5, 2)–Codes an. | {Geben Sie die Kenngrößen des vorgegebenen (5, 2)–Codes an. | ||
|type="{}"} | |type="{}"} | ||
− | $ | + | $(5, \, 2)–{\rm Code} \text{:} \hspace{0.2cm} R \ = \ $ { 0.4 3% } |
− | $ | + | $d_{\rm min} \ = \ $ { 3 3% } |
{Welche Codeworte besitzt der (6, 2)–Code nach Erweiterung? | {Welche Codeworte besitzt der (6, 2)–Code nach Erweiterung? |
Version vom 20. Dezember 2017, 09:07 Uhr
Häufig kennt man einen Code, der für eine Anwendung als geeignet erscheint, dessen Coderate aber nicht exakt mit den Vorgaben übereinstimmt.
Zur Ratenanpassung gibt es verschiedene Möglichkeiten
- Erweiterung (englisch Extension): Ausgehend vom $(n, \, k)$–Code, dessen Prüfmatrix $\mathbf{H}$ gegeben ist, erhält man einen $(n+1, \, k)$–Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit
- $$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$
hinzu und damit auch eine neue Prüfgleichung, die in $\mathbf{H}'$ berücksichtigt ist.
- Punktierung (englisch Puncturing): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, \, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix $\mathbf{H}$ eine Zeile und eine Spalte zu streichen.
- Verkürzung (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, \, k–1)$–Code kleinerer Rate.
In dieser Aufgabe sollen ausgehend von einem $(5, \, 2)$–Blockcode
- $$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$
folgende Codes konstruiert und analysiert werden:
- ein $(6, \, 2)$–Code durch einmalige Erweiterung,
- ein $(7, \, 2)$–Code durch nochmalige Erweiterung,
- ein $(4, \, 2)$–Code durch Punktierung.
Die Prüfmatrix und die Generatormatrix des systematischen $(5, \, 2)$–Codes lauten:
- $${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
Hinweise :
- Die Aufgabe bezieht sich auf das Kapitel Allgemeine Beschreibung linearer Blockcodes.
- In der Aufgabe 1.09 wird beispielhaft gezeigt, wie aus dem $(7, \, 4, \, 3)$–Hamming–Code durch Erweiterung ein $(8, \, 4, \, 4)$–Code entsteht.
Fragebogen
Musterlösung
(2) Bei Erweiterung vom (5, 2)–Code zum (6, 2)–Code wird ein weiteres Prüfbit hinzugefügt. Das Codewort hat somit die Form
- $$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, p_1, p_2, p_{3}, p_4) \hspace{0.05cm}.$$
Für das hinzugekommene Prüfbit muss dabei gelten:
- $$p_4 = x_6 = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \hspace{0.05cm}.$$
Das heißt: Das neue Prüfbit $p_{4}$ wird so gewählt, dass sich in jedem Codewort eine gerade Anzahl von Einsen ergibt ⇒ Antwort 2. Löst man diese Aufgabe mit der Prüfmatrix, so erhält man
- $${ \boldsymbol{\rm H}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &0 &0 &0 &1 \end{pmatrix}$$
- $$\Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &1 &0 &1\\ 0 &1 &0 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$
Die beiden Zeilen der Generatormatrix ${ \boldsymbol{\rm G}}$ ergeben zwei der vier Codeworte, die Modulo–2–Summe das dritte und schließlich ist auch noch das Nullwort zu berücksichtigen.
(3) Nach Erweiterung vom (5, 2)–Code auf den (6, 2)–Code
- vermindert sich die Rate von $R = 2/5$ auf $R = 2/6 \underline{= 0.333}$,
- erhöht sich die Minimaldistanz von $d_{\rm min} = 3$ auf $d_{\rm min} \underline{= 4}$ .
Allgemein gilt: Erweitert man einen Code, so nimmt die Rate ab und die Minimaldistanz erhöht sich um 1, falls $d_{\rm min}$ vorher ungerade war.
(4) Bei gleicher Vorgehensweise wie unter (3) erhält man
- $${ \boldsymbol{\rm H}}_{(7,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{{\rm (7,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 0 &0 &0 &0 &0 &0 &1 \end{pmatrix}$$
- $$\Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &1 &0 &1 &0 \\ 0 &1 &0 &1 &1 &1 &0 \end{pmatrix}\hspace{0.05cm}.$$
⇒ Beide Antworten sind richtig.
(5) Die Rate beträgt nun $R = 2/7 = \underline{0.266}$. Die Minimaldistanz ist weiterhin $d_{\rm min} \underline{= 4}$ , wie man aus den Codeworten des (7, 2)–Codes ablesen kann:
- $$\mathcal{C} = \{ (0, 0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 0, 1, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1, 0), \hspace{0.1cm}(1, 1, 1, 0, 1, 0, 0) \}\hspace{0.05cm}.$$
Allgemein gilt: Ist die Minimaldistanz eines Codes geradzahlig, so kann diese durch Erweiterung nicht vergrößert werden.
(6) Richtig sind die Aussagen 1 und 2. Durch Streichen der letzten Zeile und der letzten Spalte erhält man für die Prüfmatrix bzw. die Generatormatrix (jeweils in systematischer Form):
- $${ \boldsymbol{\rm H}}_{(4,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 \\ 1 &1 &0 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (4,\hspace{0.05cm} 2)}} = \begin{pmatrix} 1 &0 &1 &1 \\ 0 &1 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
Aus der Generatormatrix ergeben sich die genannten Codeworte $(1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)$ als Zeilensumme sowie das Nullwort $(0, 0, 0, 0)$. Die Minimaldistanz dieses Codes ist $d_{\rm min}= 2$ und damit kleiner als die minimale Distanz $d_{\rm min}= 3$ des (5, 2)–Codes.
Allgemein gilt: Durch Punktierung wird $d_{\rm min}$ um 1 kleiner (wenn sie vorher gerade war) oder sie bleibt gleich. Dies kann man sich verdeutlichen, wenn man durch eine weitere Punktierung (des Prüfbits $p_{2}$) den (3, 2)–Blockcode generiert. Dieser Code
- $$ \mathcal{C} = \{ (0, 0, 0), \hspace{0.1cm}(0, 1, 1), \hspace{0.1cm}(1, 0, 1), \hspace{0.1cm}(1, 1, 0) \}$$
besitzt die gleiche Minimaldistanz $d_{\rm min}= 2$ wie der (4, 2)–Code.