Aufgaben:Aufgabe 1.09Z: Erweiterung und/oder Punktierung: Unterschied zwischen den Versionen

Aus LNTwww
Wechseln zu:Navigation, Suche
Zeile 1: Zeile 1:
{{quiz-Header|Buchseite=Kanalcodierung/Allgemeine Beschreibung linearer Blockcodes
+
{{quiz-Header|Buchseite=Kanalcodierung/Allgemeine Beschreibung linearer Blockcodes}}
 
 
}}
 
  
 
[[Datei:P_ID2403__KC_Z_1_9.png|right|frame|Zur Erweiterung und Punktierung]]
 
[[Datei:P_ID2403__KC_Z_1_9.png|right|frame|Zur Erweiterung und Punktierung]]
Zeile 9: Zeile 7:
 
Zur Ratenanpassung gibt es verschiedene Möglichkeiten
 
Zur Ratenanpassung gibt es verschiedene Möglichkeiten
  
* <b><span style="color: rgb(204, 0, 0);">Erweiterung</span></b> (englisch ''Extension''): Ausgehend vom $(n, k)$–Code, dessen Prüfmatrix '''H''' gegeben ist, erhält man einen $(n+1, k)$–Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit
+
* <b><span style="color: rgb(204, 0, 0);">Erweiterung</span></b> (englisch ''Extension''): Ausgehend vom $(n, \, k)$–Code, dessen Prüfmatrix $\mathbf{H}$ gegeben ist, erhält man einen $(n+1, \, k)$–Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit
 
:$$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$
 
:$$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$
hinzu und damit auch eine neue Prüfgleichung, die in '''H'''' berücksichtigt ist.
+
hinzu und damit auch eine neue Prüfgleichung, die in $\mathbf{H}'$ berücksichtigt ist.
  
* <b><span style="color: rgb(204, 0, 0);">Punktierung</span></b> (englisch ''Puncturing''): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix '''H''' eine Zeile und eine Spalte zu streichen.
+
* <b><span style="color: rgb(204, 0, 0);">Punktierung</span></b> (englisch ''Puncturing''): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, \, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix $\mathbf{H}$ eine Zeile und eine Spalte zu streichen.
  
* <b><span style="color: rgb(204, 0, 0);">Verkürzung</span></b> (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, k–1)$–Code kleinerer Rate.
+
* <b><span style="color: rgb(204, 0, 0);">Verkürzung</span></b> (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, \, k–1)$–Code kleinerer Rate.
  
In dieser Aufgabe sollen ausgehend von einem (5, 2)–Blockcode
+
 
 +
In dieser Aufgabe sollen ausgehend von einem $(5, \, 2)$–Blockcode
  
 
:$$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$
 
:$$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$
  
 
folgende Codes konstruiert und analysiert werden:
 
folgende Codes konstruiert und analysiert werden:
*ein (6, 2)–Code durch einmalige Erweiterung,
+
*ein $(6, \, 2)$–Code durch einmalige Erweiterung,
  
*ein (7, 2)–Code durch nochmalige Erweiterung,
+
*ein $(7, \, 2)$–Code durch nochmalige Erweiterung,
  
*ein (4, 2)–Code durch Punktierung.
+
*ein $(4, \, 2)$–Code durch Punktierung.
  
  
Die Prüfmatrix und die Generatormatrix des systematischen (5, 2)–Codes lauten:
+
Die Prüfmatrix und die Generatormatrix des systematischen $(5, \, 2)$–Codes lauten:
  
 
:$${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
 
:$${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$
  
''Hinweis'' :  
+
''Hinweise'' :  
 
+
* Die Aufgabe bezieht sich auf das Kapitel  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes| Allgemeine Beschreibung linearer Blockcodes]].  
Die Aufgabe bezieht sich auf das Kapitel  [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes| Allgemeine Beschreibung linearer Blockcodes]]. In der [[Aufgaben:1.09_Erweiterter_Hamming–Code|Aufgabe 1.09]] wird beispielhaft gezeigt, wie aus dem (7, 4, 3)–Hamming–Code durch Erweiterung ein (8, 4, 4)–Code entsteht.
+
* In der [[Aufgaben:1.09_Erweiterter_Hamming–Code|Aufgabe 1.09]] wird beispielhaft gezeigt, wie aus dem $(7, \, 4, \, 3)$–Hamming–Code durch Erweiterung ein $(8, \, 4, \, 4)$–Code entsteht.
  
 
===Fragebogen===
 
===Fragebogen===
Zeile 43: Zeile 42:
 
{Geben Sie die Kenngrößen des vorgegebenen (5, 2)–Codes an.
 
{Geben Sie die Kenngrößen des vorgegebenen (5, 2)–Codes an.
 
|type="{}"}
 
|type="{}"}
$\ (5, 2)–{\rm Code}:   R $ = { 0.4 3% }
+
$(5, \, 2)–{\rm Code} \text{:} \hspace{0.2cm} R \ = \ $ { 0.4 3% }
$\ d_{\rm mim}$={  3 3% }  
+
$d_{\rm min} \ = \ $ {  3 3% }  
  
 
{Welche Codeworte besitzt der (6, 2)–Code nach Erweiterung?
 
{Welche Codeworte besitzt der (6, 2)–Code nach Erweiterung?

Version vom 20. Dezember 2017, 09:07 Uhr

Zur Erweiterung und Punktierung

Häufig kennt man einen Code, der für eine Anwendung als geeignet erscheint, dessen Coderate aber nicht exakt mit den Vorgaben übereinstimmt.

Zur Ratenanpassung gibt es verschiedene Möglichkeiten

  • Erweiterung (englisch Extension): Ausgehend vom $(n, \, k)$–Code, dessen Prüfmatrix $\mathbf{H}$ gegeben ist, erhält man einen $(n+1, \, k)$–Code, indem man die Prüfmatrix um eine Zeile und eine Spalte erweitert und die neuen Matrixelemente entsprechend der oberen Grafik mit Nullen und Einsen ergänzt. Man fügt ein neues Prüfbit
$$x_{n+1} = x_1 \oplus x_2 \oplus ... \hspace{0.05cm} \oplus x_n$$

hinzu und damit auch eine neue Prüfgleichung, die in $\mathbf{H}'$ berücksichtigt ist.

  • Punktierung (englisch Puncturing): Entsprechend der unteren Abbildung kommt man zu einem $(n–1, \, k)$–Code größerer Rate, wenn man auf ein Prüfbit und eine Prüfgleichung verzichtet, was gleichbedeutend damit ist, aus der Prüfmatrix $\mathbf{H}$ eine Zeile und eine Spalte zu streichen.
  • Verkürzung (englisch Shortening): Verzichtet man anstelle eines Prüfbits auf ein Informationsbit, so ergibt sich ein $(n–1, \, k–1)$–Code kleinerer Rate.


In dieser Aufgabe sollen ausgehend von einem $(5, \, 2)$–Blockcode

$$\mathcal{C} = \{ (0, 0, 0, 0, 0) \hspace{0.1cm}, (0, 1, 0, 1, 1) \hspace{0.1cm},(1, 0, 1, 1, 0) \hspace{0.1cm},(1, 1, 1, 0, 1) \}$$

folgende Codes konstruiert und analysiert werden:

  • ein $(6, \, 2)$–Code durch einmalige Erweiterung,
  • ein $(7, \, 2)$–Code durch nochmalige Erweiterung,
  • ein $(4, \, 2)$–Code durch Punktierung.


Die Prüfmatrix und die Generatormatrix des systematischen $(5, \, 2)$–Codes lauten:

$${ \boldsymbol{\rm H}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &0 &0\\ 1 &1 &0 &1 &0\\ 0 &1 &0 &0 &1 \end{pmatrix} \hspace{0.3cm} \Leftrightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{(5, 2)} = \begin{pmatrix} 1 &0 &1 &1 &0\\ 0 &1 &0 &1 &1 \end{pmatrix} \hspace{0.05cm}.$$

Hinweise :

Fragebogen

1

Geben Sie die Kenngrößen des vorgegebenen (5, 2)–Codes an.

$(5, \, 2)–{\rm Code} \text{:} \hspace{0.2cm} R \ = \ $

$d_{\rm min} \ = \ $

2

Welche Codeworte besitzt der (6, 2)–Code nach Erweiterung?

$(0 0 0 0 0 1), (0 1 0 1 1 0), (1 0 1 1 0 0), (1 1 1 0 1 1).$
$(0 0 0 0 0 0), (0 1 0 1 1 1), (1 0 1 1 0 1), (1 1 1 0 1 0).$

3

Geben Sie die Kenngrößen des erweiterten (6, 2)–Codes an.

$\ (6, 2)–{\rm Code}: R $ =

$\ d_{\rm mim}$=

4

Wie lautet die systematische Generatormatrix des (7, 2)–Codes?

Zeile 1 von ${\boldsymbol{\rm G}}: 1, 0, 1, 1, 0, 1, 0.$
Zeile 2 von ${\boldsymbol{\rm G}}: 0, 1, 0, 1, 1, 1, 0.$

5

Geben Sie die Kenngrößen des erweiterten (7, 2)–Codes an.

$\ (7, 2)–{\rm Code}: R $ =

$\ d_{\rm mim}$=

6

Welche Aussagen gelten für den (4, 2)–Code (Punktierung des letzten Prüfbits)?

Die Coderate beträgt nun $R = 2/4 = 0.5.$
$C_{(4, 2)} = {(0, 0, 0, 0), (1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)}.$
Die Minimaldistanz bleibt gegenüber dem (5, 2)–Code gleich.


Musterlösung

(1)  Die Rate des (5, 2)–Codes ist $R = 2/5 \underline{ = 0.4}$. Aus dem angegebenen Code erkennt man weiterhin die minimale Distanz $d_{min} \underline{ = 3}$.

(2)  Bei Erweiterung vom (5, 2)–Code zum (6, 2)–Code wird ein weiteres Prüfbit hinzugefügt. Das Codewort hat somit die Form

$$\underline{x} = ( x_1, x_2, x_3, x_4, x_5, x_6) = ( u_1, u_2, p_1, p_2, p_{3}, p_4) \hspace{0.05cm}.$$

Für das hinzugekommene Prüfbit muss dabei gelten:

$$p_4 = x_6 = x_1 \oplus x_2 \oplus x_3 \oplus x_4 \oplus x_5 \hspace{0.05cm}.$$

Das heißt: Das neue Prüfbit $p_{4}$ wird so gewählt, dass sich in jedem Codewort eine gerade Anzahl von Einsen ergibt ⇒ Antwort 2. Löst man diese Aufgabe mit der Prüfmatrix, so erhält man

$${ \boldsymbol{\rm H}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 0 &1 &0 &0 &1 &0\\ 1 &1 &0 &0 &0 &1 \end{pmatrix}$$
$$\Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &1 &0 &1\\ 0 &1 &0 &1 &1 &1 \end{pmatrix}\hspace{0.05cm}.$$

Die beiden Zeilen der Generatormatrix ${ \boldsymbol{\rm G}}$ ergeben zwei der vier Codeworte, die Modulo–2–Summe das dritte und schließlich ist auch noch das Nullwort zu berücksichtigen.

(3)  Nach Erweiterung vom (5, 2)–Code auf den (6, 2)–Code

  • vermindert sich die Rate von $R = 2/5$ auf $R = 2/6 \underline{= 0.333}$,
  • erhöht sich die Minimaldistanz von $d_{\rm min} = 3$ auf $d_{\rm min} \underline{= 4}$ .


Allgemein gilt: Erweitert man einen Code, so nimmt die Rate ab und die Minimaldistanz erhöht sich um 1, falls $d_{\rm min}$ vorher ungerade war.

(4)  Bei gleicher Vorgehensweise wie unter (3) erhält man

$${ \boldsymbol{\rm H}}_{(7,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 1 &1 &1 &1 &1 &1 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{{\rm (7,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &0 &0 &0 &0\\ 1 &1 &0 &1 &0 &0 &0\\ 0 &1 &0 &0 &1 &0 &0\\ 1 &1 &0 &0 &0 &1 &0\\ 0 &0 &0 &0 &0 &0 &1 \end{pmatrix}$$
$$\Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (6,\hspace{0.05cm} 2)\hspace{0.05cm}sys}} = \begin{pmatrix} 1 &0 &1 &1 &0 &1 &0 \\ 0 &1 &0 &1 &1 &1 &0 \end{pmatrix}\hspace{0.05cm}.$$

Beide Antworten sind richtig.

(5)  Die Rate beträgt nun $R = 2/7 = \underline{0.266}$. Die Minimaldistanz ist weiterhin $d_{\rm min} \underline{= 4}$ , wie man aus den Codeworten des (7, 2)–Codes ablesen kann:

$$\mathcal{C} = \{ (0, 0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 0, 1, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1, 0), \hspace{0.1cm}(1, 1, 1, 0, 1, 0, 0) \}\hspace{0.05cm}.$$

Allgemein gilt: Ist die Minimaldistanz eines Codes geradzahlig, so kann diese durch Erweiterung nicht vergrößert werden.


(6)  Richtig sind die Aussagen 1 und 2. Durch Streichen der letzten Zeile und der letzten Spalte erhält man für die Prüfmatrix bzw. die Generatormatrix (jeweils in systematischer Form):

$${ \boldsymbol{\rm H}}_{(4,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &1 &0 \\ 1 &1 &0 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm G}}_{{\rm (4,\hspace{0.05cm} 2)}} = \begin{pmatrix} 1 &0 &1 &1 \\ 0 &1 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$

Aus der Generatormatrix ergeben sich die genannten Codeworte $(1, 0, 1, 1), (0, 1, 0, 1), (1, 1, 1, 0)$ als Zeilensumme sowie das Nullwort $(0, 0, 0, 0)$. Die Minimaldistanz dieses Codes ist $d_{\rm min}= 2$ und damit kleiner als die minimale Distanz $d_{\rm min}= 3$ des (5, 2)–Codes.

Allgemein gilt: Durch Punktierung wird $d_{\rm min}$ um 1 kleiner (wenn sie vorher gerade war) oder sie bleibt gleich. Dies kann man sich verdeutlichen, wenn man durch eine weitere Punktierung (des Prüfbits $p_{2}$) den (3, 2)–Blockcode generiert. Dieser Code

$$ \mathcal{C} = \{ (0, 0, 0), \hspace{0.1cm}(0, 1, 1), \hspace{0.1cm}(1, 0, 1), \hspace{0.1cm}(1, 1, 0) \}$$

besitzt die gleiche Minimaldistanz $d_{\rm min}= 2$ wie der (4, 2)–Code.