Aufgaben:Aufgabe 4.7: Kupfer-Doppelader 0.5 mm: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 4.7 Kupfer-Doppelader 0.5 mm nach Aufgabe 4.7: Kupfer-Doppelader 0.5 mm) |
|
(kein Unterschied)
|
Version vom 3. Januar 2018, 14:24 Uhr
Hier soll das Zeitverhalten einer Kupferdoppelader mit Durchmesser $d = 0.5 \ \rm mm$ analysiert werden. Der Frequenzgang lautet mit der Leitungslänge $l = 1.5 \ \rm km$ und der Bitrate $R = 10 \rm Mbit/s$:
- $$H_{\rm K}(f) = {\rm e}^{-{\rm a}_0 } \cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} 2 \pi \cdot f \hspace{0.05cm} \cdot \hspace{0.01cm}\tau_{\rm P}} \cdot {\rm e}^{-{\rm a}_1 \hspace{0.05cm}\cdot \hspace{0.02cm}2f/R}\cdot {\rm e}^{-{\rm a}_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}}\cdot {\rm e}^{-{\rm j} \hspace{0.05cm} \cdot \hspace{0.05cm} b_2 \hspace{0.05cm}\cdot \hspace{0.05cm}\sqrt{2f/R}} \hspace{0.05cm}.$$
Verwendet sind folgende Größen, die sich aus dem Dämpfungs– und Phasenmaß ableiten lassen: $${\rm a}_0 = \alpha_0 \cdot l\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\alpha_0 = 0.5066\,\, \frac{\rm Np}{\rm km}\hspace{0.05cm},$$ $$ \tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi} \hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm}\beta_1 = 30.6\,\, \frac{\rm rad}{\rm km \cdot MHz}\hspace{0.05cm},$$ $$ {\rm a}_1 = \alpha_1 \cdot l \cdot {{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_1 = 0.136\,\, \frac{\rm Np}{\rm km \cdot MHz}\hspace{0.05cm},$$ $$ {\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \alpha_2 = 1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}}\hspace{0.05cm},$$ $$ {\rm b}_2 = \beta_2 \cdot l \cdot \sqrt{{R}/{2}}\hspace{0.05cm},\hspace{0.2cm}{\rm mit} \hspace{0.15cm} \beta_2 = 1.1467\,\, \frac{\rm rad}{\rm km \cdot MHz^{0.5}}\hspace{0.05cm}.$$
Die Impulsantwort lässt sich somit in der Form $$h_{\rm K}(t ) = K \cdot \left [ \delta(t - \tau_{\rm P})\star h_{1}(t) \star h_{2}(t) \right ]$$ darstellen, wobei
- die Teilimpulsantwort $h_1(t)$ auf den dritten Term in obiger Gleichung zurückgeht, und
- $h_2(t)$ die gemeinsame Zeitbereichsdarstellung der beiden letzten Terme angibt.
Die Grafik zeigt als rote Kurve den Anteil $h_2(t)$ der Impulsantwort und das Faltungsprodukt $h_1(t) \star h_2(t)$ (blauer Kurvenverlauf). Dabei ist $h_2(t)$ gleich der Koaxialkabel–Impulsantwort mit der charakteristischen Kabeldämpfung ${\rm a}_\star = {\rm a}_2$.
Hinweise:
- Die Aufgabe gehört zum Kapitel Eigenschaften von Kupfer–Doppeladern.
- Sollte die Eingabe des Zahlenwertes „0” erforderlich sein, so geben Sie bitte „0.” ein.
- Die Parameter $\alpha_0$, $\alpha_1$ und $\alpha_2$ wurden aus den $k$–Parametern umgerechnet, wie in Aufgabe 4.6 gezeigt.
- Der Phasenmaßparameter $\beta_2$ wurde hier zahlenmäßig gleich dem Dämpfungsmaßparameter $\alpha_2$ gesetzt. Der Dämpfungsanteil ${\rm a}_2$ und der Phasenanteil ${b}_2$ unterscheiden sich deshalb nur in der Einheit.
- Auf der Seite Diskussion der gefundenen Näherungslösung wird dargelegt, warum diese Maßnahme erforderlich ist.
Fragebogen
Musterlösung
(2) Für die Phasenlaufzeit gilt mit der angegebenen Gleichung:
$$\tau_{\rm P} = \frac{\beta_1 \cdot l}{2 \pi}= \frac{30.6 \cdot 1.5}{2 \pi}\, {\rm \mu s}\approx 7.31\, {\rm \mu
s}\hspace{0.05cm},$$
undauf die Symboldauer $T = 0.1 \ μ\rm s$ bezogen: ${\tau_{\rm P}}/{T} \hspace{0.15cm}\underline{ \approx 73}\hspace{0.05cm}.$
(3) Die Impulsantwort eines Koaxialkabels ist näherungsweise gleich $h_2(t)$), wenn dieses Koaxialkabel folgende charakteristische Kabeldämpfung aufweist:
$${\rm a}_\star ={\rm a}_2 = \alpha_2 \cdot l \cdot \sqrt{{R}/{2}} =
1.1467\,\, \frac{\rm Np}{\rm km \cdot MHz^{0.5}} \cdot 1.5\,{\rm km} \cdot \sqrt{\frac{10\,{\rm MHz}}{2}}
= 2.93\,{\rm Np} = 2.93\,{\rm Np} \cdot8.686\,\frac {\rm dB}{\rm Np} \hspace{0.15cm}\underline{ =25.5\,{\rm dB}}\hspace{0.05cm}.$$
(4) Richig sind die Aussagen 1 und 2.
- Die Fouriertransformierte $H_1(f) = {\rm e}^{-A \cdot |f|}$ mit $A = 2 \cdot {\rm a}_1/R$ ist reell und gerade, so dass $h_1(t)$ ebenfalls reell und gerade ist.
- Aufgrund der Tiefpass–Charakteristik von $H_1(f)$ liegt das Maximum bei $t = 0$.
- Die letzte Aussage falsch ist dagegen falsch : Das Integral über $h_1(t)$ im gesamten Zeitbereich $ \pm \infty$ ist gleich $H_1(f=0) = 1$.
(5) Richtig ist nur der Lösungsvorschlag 1:
- Die Teilimpulsantwort $h_1(t ) \star h_2(t )$ berücksichtigt den Einfluss von $\alpha_1$, $\alpha_2$ und $\beta_2$ und damit alle Terme, die zu Verzerrungen führen. Dagegen führt $\alpha_0$ nur zu einer frequenzunabhängigen Dämpfung und$\beta_1$ lediglich zu einer für alle Frequenzen konstanten Laufzeit.
- Der Lösungsvorschlag 2 trifft dagegen nicht zu. Zunächst (bei kleinen $t$–Werten) ist $h_1(t ) \star h_2(t )$ kleiner als $h_2(t )$. Bei großen $t$–Werten liegt dann die blaue Kurve oberhalb der roten. Das bedeutet: $\alpha_1$ und damit auch $h_1(t )$ bewirken tatsächlich zusätzliche Verzerrungen, auch wenn diese nicht ins Gewicht fallen.