Aufgaben:Aufgabe 1.10: Einige Generatormatrizen: Unterschied zwischen den Versionen
K (Guenter verschob die Seite 1.10 Einige Generatormatrizen nach Aufgabe 1.10: Einige Generatormatrizen) |
|||
Zeile 5: | Zeile 5: | ||
Wir betrachten nun verschiedene Binärcodes einheitlicher Länge $n$. Alle Codes der Form | Wir betrachten nun verschiedene Binärcodes einheitlicher Länge $n$. Alle Codes der Form | ||
− | :$$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1, x_2, ... \hspace{0.05cm}, x_n) \hspace{0. | + | :$$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1, x_2, \ \text{...} \ \hspace{0.05cm}, x_n) \hspace{0.5cm}\text{mit} |
− | + | \hspace{0.5cm} x_i \hspace{-0.15cm}\ \in \ \hspace{-0.15cm} \{ 0, 1 \},\hspace{0.2cm} i = 1, ... \hspace{0.05cm}, n$$ | |
− | lassen sich in einem $n$–dimensionalen Vektorraum darstellen und interpretieren ⇒ $\rm GF(2^n)$. | + | lassen sich in einem $n$–dimensionalen Vektorraum darstellen und interpretieren ⇒ ${\rm GF}(2^n)$. |
Durch eine $k×n$–Generatormatrix $\mathbf{G}$ (also eine Matrix mit $k$ Zeilen und $n$ Spalten) ergibt sich ein $(n, \, k)$–Code, allerdings nur dann, wenn der Rang (englisch: ''Rank'') der Matrix $\mathbf{G}$ ebenfalls gleich $k$ ist. Weiter gilt: | Durch eine $k×n$–Generatormatrix $\mathbf{G}$ (also eine Matrix mit $k$ Zeilen und $n$ Spalten) ergibt sich ein $(n, \, k)$–Code, allerdings nur dann, wenn der Rang (englisch: ''Rank'') der Matrix $\mathbf{G}$ ebenfalls gleich $k$ ist. Weiter gilt: | ||
− | *Jeder Code $C$ spannt einen $k$–dimensionalen linearen Untervektorraum des Galoisfeldes $\rm GF(2^n$ | + | *Jeder Code $\mathcal{C}$ spannt einen $k$–dimensionalen linearen Untervektorraum des Galoisfeldes ${\rm GF}(2^n)$ auf. |
− | *Als Basisvektoren dieses Untervektorraums können $k$ unabhängige Codeworte von $C$ verwendet werden. Eine weitere Einschränkung gibt es für die Basisvektoren nicht. | + | *Als Basisvektoren dieses Untervektorraums können $k$ unabhängige Codeworte von $\mathcal{C}$ verwendet werden. Eine weitere Einschränkung gibt es für die Basisvektoren nicht. |
− | *Die Prüfmatrix $\mathbf{H}$ spannt ebenfalls einen Untervektorraum von $\rm GF(2^n)$ auf. Dieser hat aber die Dimension $m = n – k$ und ist orthogonal zum Untervektorraum, der auf $\mathbf{G}$ basiert. | + | *Die Prüfmatrix $\mathbf{H}$ spannt ebenfalls einen Untervektorraum von ${\rm GF}(2^n)$ auf. Dieser hat aber die Dimension $m = n – k$ und ist orthogonal zum Untervektorraum, der auf $\mathbf{G}$ basiert. |
− | *Bei einem linearen Code gilt $\underline{x} = \underline{u} · \boldsymbol{ {\rm G}}$, wobei $\underline{u} = (u_{1}, \, u_{2}, \, ... \, , \, u_{k})$ das Informationswort angibt. Ein systematischer Code liegt vor, wenn $x_{1} = u_{1}, \, ... \, , \, x_{k} = u_{k}$ gilt. | + | *Bei einem linearen Code gilt $\underline{x} = \underline{u} · \boldsymbol{ {\rm G}}$, wobei $\underline{u} = (u_{1}, \, u_{2}, \, \text{...} \, , \, u_{k})$ das Informationswort angibt. Ein systematischer Code liegt vor, wenn $x_{1} = u_{1}, \, \text{...} \, , \, x_{k} = u_{k}$ gilt. |
*Bei einem systematischen Code besteht ein einfacher Zusammenhang zwischen $\mathbf{G}$ und $\mathbf{H}$. Nähere Angaben hierzu finden Sie im [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|Theorieteil]]. | *Bei einem systematischen Code besteht ein einfacher Zusammenhang zwischen $\mathbf{G}$ und $\mathbf{H}$. Nähere Angaben hierzu finden Sie im [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes#Systematische_Codes|Theorieteil]]. | ||
− | |||
− | |||
− | |||
− | |||
− | :$$ | + | ''Hinweise'' : |
+ | |||
+ | *Die Aufgabe gehört zum Kapitel [[Kanalcodierung/Allgemeine_Beschreibung_linearer_Blockcodes|Allgemeine Beschreibung linearer Blockcodes]]. | ||
+ | * Für die gesamte Aufgabe gilt $n = 6$. | ||
+ | *In der Teilaufgabe (4) soll geklärt werden, welche der Matrizen $\boldsymbol{ {\rm G}}_{\rm A}, \ \boldsymbol{ {\rm G}}_{\rm B}$ bzw. $ \boldsymbol{ {\rm G}}_{\rm C}$ zu einem $(6, \, 3)$–Blockcode mit den nachfolgend aufgeführten Codeworten führen: | ||
+ | |||
+ | :$$ ( 0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 0, 1, 0, 1, 1), \hspace{0.1cm}(0, 1, 0, 1, 0, 1), \hspace{0.1cm}(0, 1, 1, 1, 1, 0), \hspace{0.1cm} ( 1, 0, 0, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1), \hspace{0.1cm}(1, 1, 0, 0, 1, 1), \hspace{0.1cm}(1, 1, 1, 0, 0, 0)\hspace{0.05cm}.$$ | ||
Zeile 41: | Zeile 43: | ||
− | {Wie lauten die Codeworte des linearen $(6, \, 2)$–Codes explizit? | + | {Wie lauten die vier Codeworte des linearen $(6, \, 2)$–Codes explizit? |
|type="[]"} | |type="[]"} | ||
- $(0 0 1 0 1 1), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$ | - $(0 0 1 0 1 1), \ (0 1 0 1 0 1), \ (1 0 0 1 1 0), \ (1 1 0 0 1 1).$ | ||
Zeile 50: | Zeile 52: | ||
{Welche Aussagen gelten für diesen $(6, \, 2)$–Code $C$? | {Welche Aussagen gelten für diesen $(6, \, 2)$–Code $C$? | ||
|type="[]"} | |type="[]"} | ||
− | + Für alle Codeworte $(i = 1, ... , 4)$ gilt $\underline{x}_{i} \in {\rm GF}(2^6)$. | + | + Für alle Codeworte $(i = 1,\hspace{0.05cm} \text{ ...} \ , 4)$ gilt $\underline{x}_{i} \in {\rm GF}(2^6)$. |
− | + $C$ ist ein 2–dimensionaler linearer Untervektorraum von $\rm GF(2^6)$. | + | + $C$ ist ein 2–dimensionaler linearer Untervektorraum von ${\rm GF}(2^6)$. |
− | + $\mathbf{G}$ gibt Basisvektoren dieses Untervektorraumes $GF | + | + $\mathbf{G}$ gibt Basisvektoren dieses Untervektorraumes ${\rm GF} (2^2)$ an. |
- $\mathbf{G}$ und $\mathbf{H}$ sind jeweils $2×6$–Matrizen. | - $\mathbf{G}$ und $\mathbf{H}$ sind jeweils $2×6$–Matrizen. | ||
− | {Welche der Generatormatrizen | + | {Welche der in der Grafik angegebenen Generatormatrizen führen zu einem $(6, \, 3)$–Code? |
|type="[]"} | |type="[]"} | ||
− | + Generatormatrix $\boldsymbol{ {\rm G}}_{\rm A}$, | + | + Die Generatormatrix $\boldsymbol{ {\rm G}}_{\rm A}$, |
− | + Generatormatrix $\boldsymbol{ {\rm G}}_{\rm B}$, | + | + die Generatormatrix $\boldsymbol{ {\rm G}}_{\rm B}$, |
− | - Generatormatrix $\boldsymbol{ {\rm G}}_{\rm C}$. | + | - die Generatormatrix $\boldsymbol{ {\rm G}}_{\rm C}$. |
Version vom 3. Januar 2018, 14:25 Uhr
Wir betrachten nun verschiedene Binärcodes einheitlicher Länge $n$. Alle Codes der Form
- $$\underline{x} \hspace{-0.15cm}\ = \ \hspace{-0.15cm} ( x_1, x_2, \ \text{...} \ \hspace{0.05cm}, x_n) \hspace{0.5cm}\text{mit} \hspace{0.5cm} x_i \hspace{-0.15cm}\ \in \ \hspace{-0.15cm} \{ 0, 1 \},\hspace{0.2cm} i = 1, ... \hspace{0.05cm}, n$$
lassen sich in einem $n$–dimensionalen Vektorraum darstellen und interpretieren ⇒ ${\rm GF}(2^n)$.
Durch eine $k×n$–Generatormatrix $\mathbf{G}$ (also eine Matrix mit $k$ Zeilen und $n$ Spalten) ergibt sich ein $(n, \, k)$–Code, allerdings nur dann, wenn der Rang (englisch: Rank) der Matrix $\mathbf{G}$ ebenfalls gleich $k$ ist. Weiter gilt:
- Jeder Code $\mathcal{C}$ spannt einen $k$–dimensionalen linearen Untervektorraum des Galoisfeldes ${\rm GF}(2^n)$ auf.
- Als Basisvektoren dieses Untervektorraums können $k$ unabhängige Codeworte von $\mathcal{C}$ verwendet werden. Eine weitere Einschränkung gibt es für die Basisvektoren nicht.
- Die Prüfmatrix $\mathbf{H}$ spannt ebenfalls einen Untervektorraum von ${\rm GF}(2^n)$ auf. Dieser hat aber die Dimension $m = n – k$ und ist orthogonal zum Untervektorraum, der auf $\mathbf{G}$ basiert.
- Bei einem linearen Code gilt $\underline{x} = \underline{u} · \boldsymbol{ {\rm G}}$, wobei $\underline{u} = (u_{1}, \, u_{2}, \, \text{...} \, , \, u_{k})$ das Informationswort angibt. Ein systematischer Code liegt vor, wenn $x_{1} = u_{1}, \, \text{...} \, , \, x_{k} = u_{k}$ gilt.
- Bei einem systematischen Code besteht ein einfacher Zusammenhang zwischen $\mathbf{G}$ und $\mathbf{H}$. Nähere Angaben hierzu finden Sie im Theorieteil.
Hinweise :
- Die Aufgabe gehört zum Kapitel Allgemeine Beschreibung linearer Blockcodes.
- Für die gesamte Aufgabe gilt $n = 6$.
- In der Teilaufgabe (4) soll geklärt werden, welche der Matrizen $\boldsymbol{ {\rm G}}_{\rm A}, \ \boldsymbol{ {\rm G}}_{\rm B}$ bzw. $ \boldsymbol{ {\rm G}}_{\rm C}$ zu einem $(6, \, 3)$–Blockcode mit den nachfolgend aufgeführten Codeworten führen:
- $$ ( 0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 0, 1, 0, 1, 1), \hspace{0.1cm}(0, 1, 0, 1, 0, 1), \hspace{0.1cm}(0, 1, 1, 1, 1, 0), \hspace{0.1cm} ( 1, 0, 0, 1, 1, 0), \hspace{0.1cm}(1, 0, 1, 1, 0, 1), \hspace{0.1cm}(1, 1, 0, 0, 1, 1), \hspace{0.1cm}(1, 1, 1, 0, 0, 0)\hspace{0.05cm}.$$
Fragebogen
Musterlösung
(2) Da es sich um einen linearen Code handelt, muss die Modulo–$2$–Summe
- $$(0, 1, 0, 1, 0, 1) \oplus (1, 0, 0, 1, 1, 0) = (1, 1, 0, 0, 1, 1)$$
ebenfalls ein gültiges Codewort sein. Ebenso das Nullwort:
- $$(0, 1, 0, 1, 0, 1) \oplus (0, 1, 0, 1, 0, 1) = (0, 0, 0, 0, 0, 0)\hspace{0.05cm}.$$
Richtig ist somit Antwort 2.
(3) Richtig sind hier die Aussagen 1 bis 3. Basisvektoren der Generatormatrix $\mathbf{G}$ sind beispielsweise die beiden gegebenen Codeworte, woraus sich auch die Prüfmatrix $\mathbf{H}$ bestimmen lässt:
- $${ \boldsymbol{\rm G}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 1 &0 &0 &1 &1 &0\\ 0 &1 &0 &1 &0 &1 \end{pmatrix} \hspace{0.3cm} \Rightarrow\hspace{0.3cm} { \boldsymbol{\rm H}}_{(6,\hspace{0.05cm} 2)} = \begin{pmatrix} 0 &0 &1 &0 &0 &0\\ 1 &1 &0 &1 &0 &0\\ 1 &0 &0 &0 &1 &0\\ 0 &1 &0 &0 &0 &1 \end{pmatrix}\hspace{0.05cm}.$$
Allgemein wird durch die $k$ Basisvektoren der Generatormatrix $\mathbf{G}$ ein $k$–dimensionaler Untervektorraum aufgespannt und durch die $m×n$–Matrix $\mathbf{H}$ (mit $m = n - k$) ein hierzu orthogonaler Untervektorraum der Dimension $m$. Anmerkung: Der hier angegebene
- $$\mathcal{C}_{(6,\hspace{0.05cm} 2)} = \{ (0, 0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 0, 1, 0, 1), (1, 0, 0, 1, 1, 0), \hspace{0.1cm}(1, 1, 0, 0, 1, 1) \}$$
ist nicht sonderlich effektiv, da $p_{1} = x_{3}$ stets $0$ ist. Durch Punktierung kommt man zum Code
- $$\mathcal{C}_{(5,\hspace{0.05cm} 2)} = \{ (0, 0, 0, 0, 0), \hspace{0.1cm}(0, 1, 1, 0, 1), (1, 0, 1, 1, 0), \hspace{0.1cm}(1, 1, 0, 1, 1) \}$$
mit gleicher Minimaldistanz $d_{\rm min} = 3$, aber größerer Coderate $R = 2/5$ gegenüber $R = 1/3$.
- $$\underline{g}_1 \oplus \underline{g}_2 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_3\hspace{0.05cm},$$
- $$\underline{g}_1 \oplus \underline{g}_3 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_2\hspace{0.05cm},$$
- $$\underline{g}_2 \oplus \underline{g}_3 \hspace{-0.15cm} \ \ne \ \hspace{-0.15cm} \underline{g}_1\hspace{0.05cm}.$$
Gleiches gilt für Matrix $\mathbf{G}_{\rm B}$. Die Basisvektoren sind hier so gewählt, dass der Code auch systematisch ist.
Für die letzte Generatormatrix gilt: $\underline{g}_{1}⊕\underline{g}_{2} = \underline{g}_{3}$ ⇒ der Rang der Matrix (2) ist kleiner als deren Ordnung (3). Hier führt nicht nur $\underline{u} = (0, 0, 0)$ zum Codewort $(0, 0, 0, 0, 0, 0)$, sondern auch $\underline{u} = (1, 1, 1)$. Richtig sind die Lösungsvorschläge 1 und 2.